Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.127
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(10): 2375-2392.e33, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38653238

RESUMO

Lysine lactylation is a post-translational modification that links cellular metabolism to protein function. Here, we find that AARS1 functions as a lactate sensor that mediates global lysine lacylation in tumor cells. AARS1 binds to lactate and catalyzes the formation of lactate-AMP, followed by transfer of lactate to the lysince acceptor residue. Proteomics studies reveal a large number of AARS1 targets, including p53 where lysine 120 and lysine 139 in the DNA binding domain are lactylated. Generation and utilization of p53 variants carrying constitutively lactylated lysine residues revealed that AARS1 lactylation of p53 hinders its liquid-liquid phase separation, DNA binding, and transcriptional activation. AARS1 expression and p53 lacylation correlate with poor prognosis among cancer patients carrying wild type p53. ß-alanine disrupts lactate binding to AARS1, reduces p53 lacylation, and mitigates tumorigenesis in animal models. We propose that AARS1 contributes to tumorigenesis by coupling tumor cell metabolism to proteome alteration.


Assuntos
Carcinogênese , Ácido Láctico , Proteína Supressora de Tumor p53 , Animais , Feminino , Humanos , Camundongos , Carcinogênese/metabolismo , Carcinogênese/genética , Linhagem Celular Tumoral , Ácido Láctico/metabolismo , Lisina/metabolismo , Neoplasias/metabolismo , Neoplasias/genética , Processamento de Proteína Pós-Traducional , Proteína Supressora de Tumor p53/metabolismo , Masculino
2.
Cell ; 185(10): 1777-1792.e21, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35512705

RESUMO

Spatially resolved transcriptomic technologies are promising tools to study complex biological processes such as mammalian embryogenesis. However, the imbalance between resolution, gene capture, and field of view of current methodologies precludes their systematic application to analyze relatively large and three-dimensional mid- and late-gestation embryos. Here, we combined DNA nanoball (DNB)-patterned arrays and in situ RNA capture to create spatial enhanced resolution omics-sequencing (Stereo-seq). We applied Stereo-seq to generate the mouse organogenesis spatiotemporal transcriptomic atlas (MOSTA), which maps with single-cell resolution and high sensitivity the kinetics and directionality of transcriptional variation during mouse organogenesis. We used this information to gain insight into the molecular basis of spatial cell heterogeneity and cell fate specification in developing tissues such as the dorsal midbrain. Our panoramic atlas will facilitate in-depth investigation of longstanding questions concerning normal and abnormal mammalian development.


Assuntos
Organogênese , Transcriptoma , Animais , DNA/genética , Embrião de Mamíferos , Feminino , Perfilação da Expressão Gênica/métodos , Mamíferos/genética , Camundongos , Organogênese/genética , Gravidez , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Transcriptoma/genética
3.
Nat Immunol ; 23(8): 1193-1207, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35879450

RESUMO

Innate antiviral immunity deteriorates with aging but how this occurs is not entirely clear. Here we identified SIRT1-mediated DNA-binding domain (DBD) deacetylation as a critical step for IRF3/7 activation that is inhibited during aging. Viral-stimulated IRF3 underwent liquid-liquid phase separation (LLPS) with interferon (IFN)-stimulated response element DNA and compartmentalized IRF7 in the nucleus, thereby stimulating type I IFN (IFN-I) expression. SIRT1 deficiency resulted in IRF3/IRF7 hyperacetylation in the DBD, which inhibited LLPS and innate immunity, resulting in increased viral load and mortality in mice. By developing a genetic code expansion orthogonal system, we demonstrated the presence of an acetyl moiety at specific IRF3/IRF7 DBD site/s abolish IRF3/IRF7 LLPS and IFN-I induction. SIRT1 agonists rescued SIRT1 activity in aged mice, restored IFN signaling and thus antagonized viral replication. These findings not only identify a mechanism by which SIRT1 regulates IFN production by affecting IRF3/IRF7 LLPS, but also provide information on the drivers of innate immunosenescence.


Assuntos
Antivirais , Sirtuína 1 , Animais , Imunidade Inata , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/metabolismo , Camundongos , Transdução de Sinais , Sirtuína 1/genética , Sirtuína 1/metabolismo , Replicação Viral
4.
Mol Cell ; 83(13): 2206-2221.e11, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37311463

RESUMO

Histone lysine acylation, including acetylation and crotonylation, plays a pivotal role in gene transcription in health and diseases. However, our understanding of histone lysine acylation has been limited to gene transcriptional activation. Here, we report that histone H3 lysine 27 crotonylation (H3K27cr) directs gene transcriptional repression rather than activation. Specifically, H3K27cr in chromatin is selectively recognized by the YEATS domain of GAS41 in complex with SIN3A-HDAC1 co-repressors. Proto-oncogenic transcription factor MYC recruits GAS41/SIN3A-HDAC1 complex to repress genes in chromatin, including cell-cycle inhibitor p21. GAS41 knockout or H3K27cr-binding depletion results in p21 de-repression, cell-cycle arrest, and tumor growth inhibition in mice, explaining a causal relationship between GAS41 and MYC gene amplification and p21 downregulation in colorectal cancer. Our study suggests that H3K27 crotonylation signifies a previously unrecognized, distinct chromatin state for gene transcriptional repression in contrast to H3K27 trimethylation for transcriptional silencing and H3K27 acetylation for transcriptional activation.


Assuntos
Cromatina , Histonas , Camundongos , Animais , Cromatina/genética , Histonas/metabolismo , Lisina/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica , Acetilação
5.
Nat Immunol ; 19(3): 233-245, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29358709

RESUMO

Malignancies can compromise innate immunity, but the mechanisms of this are largely unknown. Here we found that, via tumor-derived exosomes (TEXs), cancers were able to transfer activated epidermal growth factor receptor (EGFR) to host macrophages and thereby suppress innate antiviral immunity. Screening of the human kinome identified the kinase MEKK2 in macrophages as an effector of TEX-delivered EGFR that negatively regulated the antiviral immune response. In the context of experimental tumor implantation, MEKK2-deficient mice were more resistant to viral infection than were wild-type mice. Injection of TEXs into mice reduced innate immunity, increased viral load and increased morbidity in an EGFR- and MEKK2-dependent manner. MEKK2 phosphorylated IRF3, a transcription factor crucial for the production of type I interferons; this triggered poly-ubiquitination of IRF3 and blocked its dimerization, translocation to the nucleus and transcriptional activity after viral infection. These findings identify a mechanism by which cancer cells can dampen host innate immunity and potentially cause patients with cancer to become immunocompromised.


Assuntos
Receptores ErbB/imunologia , Exossomos/imunologia , Imunidade Inata/imunologia , Neoplasias/imunologia , Viroses/imunologia , Adulto , Animais , Receptores ErbB/metabolismo , Exossomos/metabolismo , Feminino , Humanos , Hospedeiro Imunocomprometido/imunologia , MAP Quinase Quinase Quinase 2/imunologia , MAP Quinase Quinase Quinase 2/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade
6.
Nature ; 626(7997): 128-135, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38233523

RESUMO

The assembly and specification of synapses in the brain is incompletely understood1-3. Latrophilin-3 (encoded by Adgrl3, also known as Lphn3)-a postsynaptic adhesion G-protein-coupled receptor-mediates synapse formation in the hippocampus4 but the mechanisms involved remain unclear. Here we show in mice that LPHN3 organizes synapses through a convergent dual-pathway mechanism: activation of Gαs signalling and recruitment of phase-separated postsynaptic protein scaffolds. We found that cell-type-specific alternative splicing of Lphn3 controls the LPHN3 G-protein-coupling mode, resulting in LPHN3 variants that predominantly signal through Gαs or Gα12/13. CRISPR-mediated manipulation of Lphn3 alternative splicing that shifts LPHN3 from a Gαs- to a Gα12/13-coupled mode impaired synaptic connectivity as severely as the overall deletion of Lphn3, suggesting that Gαs signalling by LPHN3 splice variants mediates synapse formation. Notably, Gαs-coupled, but not Gα12/13-coupled, splice variants of LPHN3 also recruit phase-transitioned postsynaptic protein scaffold condensates, such that these condensates are clustered by binding of presynaptic teneurin and FLRT ligands to LPHN3. Moreover, neuronal activity promotes alternative splicing of the synaptogenic Gαs-coupled variant of LPHN3. Together, these data suggest that activity-dependent alternative splicing of a key synaptic adhesion molecule controls synapse formation by parallel activation of two convergent pathways: Gαs signalling and clustered phase separation of postsynaptic protein scaffolds.


Assuntos
Processamento Alternativo , Receptores Acoplados a Proteínas G , Receptores de Peptídeos , Sinapses , Animais , Camundongos , Processamento Alternativo/genética , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP , Subunidades alfa Gs de Proteínas de Ligação ao GTP , Ligantes , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/deficiência , Receptores de Peptídeos/genética , Receptores de Peptídeos/metabolismo , Sinapses/metabolismo , Transdução de Sinais
7.
Nature ; 626(7998): 288-293, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38326594

RESUMO

The microscopic origin of high-temperature superconductivity in cuprates remains unknown. It is widely believed that substantial progress could be achieved by better understanding of the pseudogap phase, a normal non-superconducting state of cuprates1,2. In particular, a central issue is whether the pseudogap could originate from strong pairing fluctuations3. Unitary Fermi gases4,5, in which the pseudogap-if it exists-necessarily arises from many-body pairing, offer ideal quantum simulators to address this question. Here we report the observation of a pair-fluctuation-driven pseudogap in homogeneous unitary Fermi gases of lithium-6 atoms, by precisely measuring the fermion spectral function through momentum-resolved microwave spectroscopy and without spurious effects from final-state interactions. The temperature dependence of the pairing gap, inverse pair lifetime and single-particle scattering rate are quantitatively determined by analysing the spectra. We find a large pseudogap above the superfluid transition temperature. The inverse pair lifetime exhibits a thermally activated exponential behaviour, uncovering the microscopic virtual pair breaking and recombination mechanism. The obtained large, temperature-independent single-particle scattering rate is comparable with that set by the Planckian limit6. Our findings quantitatively characterize the pseudogap in strongly interacting Fermi gases and they lend support for the role of preformed pairing as a precursor to superfluidity.

9.
Nat Immunol ; 18(7): 733-743, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28481329

RESUMO

The transcription regulator YAP controls organ size by regulating cell growth, proliferation and apoptosis. However, whether YAP has a role in innate antiviral immunity is largely unknown. Here we found that YAP negatively regulated an antiviral immune response. YAP deficiency resulted in enhanced innate immunity, a diminished viral load, and morbidity in vivo. YAP blocked dimerization of the transcription factor IRF3 and impeded translocation of IRF3 to the nucleus after viral infection. Notably, virus-activated kinase IKKɛ phosphorylated YAP at Ser403 and thereby triggered degradation of YAP in lysosomes and, consequently, relief of YAP-mediated inhibition of the cellular antiviral response. These findings not only establish YAP as a modulator of the activation of IRF3 but also identify a previously unknown regulatory mechanism independent of the kinases Hippo and LATS via which YAP is controlled by the innate immune pathway.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Fibroblastos/imunologia , Quinase I-kappa B/metabolismo , Imunidade Inata/imunologia , Lisossomos/metabolismo , Macrófagos/imunologia , Fosfoproteínas/imunologia , Infecções por Rhabdoviridae/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Sistemas CRISPR-Cas , Proteínas de Ciclo Celular , Quimiocina CCL5/genética , Quimiocina CCL5/imunologia , Quimiocina CXCL10/genética , Quimiocina CXCL10/imunologia , Imunofluorescência , Edição de Genes , Células HEK293 , Células HeLa , Humanos , Immunoblotting , Imunoprecipitação , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/imunologia , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/genética , Interferon beta/imunologia , Pulmão/imunologia , Pulmão/patologia , Camundongos , Microscopia Confocal , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Células RAW 264.7 , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Infecções por Rhabdoviridae/patologia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/imunologia , Vesiculovirus , Carga Viral , Proteínas de Sinalização YAP
10.
Nature ; 617(7962): 818-826, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37198486

RESUMO

Cancer cells rewire metabolism to favour the generation of specialized metabolites that support tumour growth and reshape the tumour microenvironment1,2. Lysine functions as a biosynthetic molecule, energy source and antioxidant3-5, but little is known about its pathological role in cancer. Here we show that glioblastoma stem cells (GSCs) reprogram lysine catabolism through the upregulation of lysine transporter SLC7A2 and crotonyl-coenzyme A (crotonyl-CoA)-producing enzyme glutaryl-CoA dehydrogenase (GCDH) with downregulation of the crotonyl-CoA hydratase enoyl-CoA hydratase short chain 1 (ECHS1), leading to accumulation of intracellular crotonyl-CoA and histone H4 lysine crotonylation. A reduction in histone lysine crotonylation by either genetic manipulation or lysine restriction impaired tumour growth. In the nucleus, GCDH interacts with the crotonyltransferase CBP to promote histone lysine crotonylation. Loss of histone lysine crotonylation promotes immunogenic cytosolic double-stranded RNA (dsRNA) and dsDNA generation through enhanced H3K27ac, which stimulates the RNA sensor MDA5 and DNA sensor cyclic GMP-AMP synthase (cGAS) to boost type I interferon signalling, leading to compromised GSC tumorigenic potential and elevated CD8+ T cell infiltration. A lysine-restricted diet synergized with MYC inhibition or anti-PD-1 therapy to slow tumour growth. Collectively, GSCs co-opt lysine uptake and degradation to shunt the production of crotonyl-CoA, remodelling the chromatin landscape to evade interferon-induced intrinsic effects on GSC maintenance and extrinsic effects on immune response.


Assuntos
Histonas , Lisina , Neoplasias , Processamento de Proteína Pós-Traducional , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Glutaril-CoA Desidrogenase/metabolismo , Histonas/química , Histonas/metabolismo , Lisina/deficiência , Lisina/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , RNA de Cadeia Dupla/imunologia , Humanos , Animais , Camundongos , Interferon Tipo I/imunologia
11.
Mol Cell ; 79(2): 304-319.e7, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32679077

RESUMO

Accurate regulation of innate immunity is necessary for the host to efficiently respond to invading pathogens and avoid excessive harmful immune pathology. Here we identified OTUD3 as an acetylation-dependent deubiquitinase that restricts innate antiviral immune signaling. OTUD3 deficiency in mice results in enhanced innate immunity, a diminished viral load, and morbidity. OTUD3 directly hydrolyzes lysine 63 (Lys63)-linked polyubiquitination of MAVS and thus shuts off innate antiviral immune response. Notably, the catalytic activity of OTUD3 relies on acetylation of its Lys129 residue. In response to virus infection, the acetylated Lys129 is removed by SIRT1, which promptly inactivates OTUD3 and thus allows timely induction of innate antiviral immunity. Importantly, acetyl-OTUD3 levels are inversely correlated with IFN-ß expression in influenza patients. These findings establish OTUD3 as a repressor of MAVS and uncover a previously unknown regulatory mechanism by which the catalytic activity of OTUD3 is tightly controlled to ensure timely activation of antiviral defense.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Imunidade Inata , Influenza Humana/imunologia , Proteases Específicas de Ubiquitina/fisiologia , Células A549 , Acetilação , Adulto , Animais , Enzimas Desubiquitinantes/metabolismo , Feminino , Células HEK293 , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Ubiquitinação
12.
Mol Cell ; 73(1): 7-21.e7, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30472188

RESUMO

The transcriptional regulators YAP and TAZ play important roles in development, physiology, and tumorigenesis and are negatively controlled by the Hippo pathway. It is yet unknown why the YAP/ TAZ proteins are frequently activated in human malignancies in which the Hippo pathway is still active. Here, by a gain-of-function cancer metastasis screen, we discovered OTUB2 as a cancer stemness and metastasis-promoting factor that deubiquitinates and activates YAP/TAZ. We found OTUB2 to be poly-SUMOylated on lysine 233, and this SUMOylation enables it to bind YAP/TAZ. We also identified a yet-unknown SUMO-interacting motif (SIM) in YAP and TAZ required for their association with SUMOylated OTUB2. Importantly, EGF and oncogenic KRAS induce OTUB2 poly-SUMOylation and thereby activate YAP/TAZ. Our results establish OTUB2 as an essential modulator of YAP/TAZ and also reveal a novel mechanism via which YAP/TAZ activity is induced by oncogenic KRAS.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias da Mama/enzimologia , Movimento Celular , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células-Tronco Neoplásicas/enzimologia , Fosfoproteínas/metabolismo , Tioléster Hidrolases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/agonistas , Receptores ErbB/metabolismo , Feminino , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lisina , Camundongos Endogâmicos BALB C , Camundongos Nus , Mutação , Metástase Neoplásica , Células-Tronco Neoplásicas/patologia , Fenótipo , Fosfoproteínas/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteólise , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais , Sumoilação , Tioléster Hidrolases/genética , Fatores de Tempo , Transativadores , Fatores de Transcrição , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteínas de Sinalização YAP
13.
Mol Cell ; 75(3): 644-660.e5, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398325

RESUMO

Cell-cell communication via ligand-receptor signaling is a fundamental feature of complex organs. Despite this, the global landscape of intercellular signaling in mammalian liver has not been elucidated. Here we perform single-cell RNA sequencing on non-parenchymal cells isolated from healthy and NASH mouse livers. Secretome gene analysis revealed a highly connected network of intrahepatic signaling and disruption of vascular signaling in NASH. We uncovered the emergence of NASH-associated macrophages (NAMs), which are marked by high expression of triggering receptors expressed on myeloid cells 2 (Trem2), as a feature of mouse and human NASH that is linked to disease severity and highly responsive to pharmacological and dietary interventions. Finally, hepatic stellate cells (HSCs) serve as a hub of intrahepatic signaling via HSC-derived stellakines and their responsiveness to vasoactive hormones. These results provide unprecedented insights into the landscape of intercellular crosstalk and reprogramming of liver cells in health and disease.


Assuntos
Comunicação Celular/genética , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Análise de Sequência de RNA , Animais , Reprogramação Celular/genética , Modelos Animais de Doenças , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Humanos , Ligantes , Fígado/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Transdução de Sinais/genética , Análise de Célula Única
14.
Plant Cell ; 35(6): 2391-2412, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-36869655

RESUMO

Mitogen-activated protein kinase (MPK) cascades play vital roles in plant innate immunity, growth, and development. Here, we report that the rice (Oryza sativa) transcription factor gene OsWRKY31 is a key component in a MPK signaling pathway involved in plant disease resistance in rice. We found that the activation of OsMKK10-2 enhances resistance against the rice blast pathogen Magnaporthe oryzae and suppresses growth through an increase in jasmonic acid and salicylic acid accumulation and a decrease of indole-3-acetic acid levels. Knockout of OsWRKY31 compromises the defense responses mediated by OsMKK10-2. OsMKK10-2 and OsWRKY31 physically interact, and OsWRKY31 is phosphorylated by OsMPK3, OsMPK4, and OsMPK6. Phosphomimetic OsWRKY31 has elevated DNA-binding activity and confers enhanced resistance to M. oryzae. In addition, OsWRKY31 stability is regulated by phosphorylation and ubiquitination via RING-finger E3 ubiquitin ligases interacting with WRKY 1 (OsREIW1). Taken together, our findings indicate that modification of OsWRKY31 by phosphorylation and ubiquitination functions in the OsMKK10-2-mediated defense signaling pathway.


Assuntos
Resistência à Doença , Proteínas Quinases Ativadas por Mitógeno , Fosforilação , Resistência à Doença/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Transdução de Sinais , Ubiquitinação
15.
Nature ; 577(7791): 492-496, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31969724

RESUMO

Although two-dimensional (2D) atomic layers, such as transition-metal chalcogenides, have been widely synthesized using techniques such as exfoliation1-3 and vapour-phase growth4,5, it is still challenging to obtain phase-controlled 2D structures6-8. Here we demonstrate an effective synthesis strategy via the progressive transformation of non-van der Waals (non-vdW) solids to 2D vdW transition-metal chalcogenide layers with identified 2H (trigonal prismatic)/1T (octahedral) phases. The transformation, achieved by exposing non-vdW solids to chalcogen vapours, can be controlled using the enthalpies and vapour pressures of the reaction products. Heteroatom-substituted (such as yttrium and phosphorus) transition-metal chalcogenides can also be synthesized in this way, thus enabling a generic synthesis approach to engineering phase-selected 2D transition-metal chalcogenide structures with good stability at high temperatures (up to 1,373 kelvin) and achieving high-throughput production of monolayers. We anticipate that these 2D transition-metal chalcogenides will have broad applications for electronics, catalysis and energy storage.

16.
Nucleic Acids Res ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884260

RESUMO

Horizontal gene transfer (HGT) phenomena pervade the gut microbiome and significantly impact human health. Yet, no current method can accurately identify complete HGT events, including the transferred sequence and the associated deletion and insertion breakpoints from shotgun metagenomic data. Here, we develop LocalHGT, which facilitates the reliable and swift detection of complete HGT events from shotgun metagenomic data, delivering an accuracy of 99.4%-verified by Nanopore data-across 200 gut microbiome samples, and achieving an average F1 score of 0.99 on 100 simulated data. LocalHGT enables a systematic characterization of HGT events within the human gut microbiome across 2098 samples, revealing that multiple recipient genome sites can become targets of a transferred sequence, microhomology is enriched in HGT breakpoint junctions (P-value = 3.3e-58), and HGTs can function as host-specific fingerprints indicated by the significantly higher HGT similarity of intra-personal temporal samples than inter-personal samples (P-value = 4.3e-303). Crucially, HGTs showed potential contributions to colorectal cancer (CRC) and acute diarrhoea, as evidenced by the enrichment of the butyrate metabolism pathway (P-value = 3.8e-17) and the shigellosis pathway (P-value = 5.9e-13) in the respective associated HGTs. Furthermore, differential HGTs demonstrated promise as biomarkers for predicting various diseases. Integrating HGTs into a CRC prediction model achieved an AUC of 0.87.

17.
Nucleic Acids Res ; 52(D1): D714-D723, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37850635

RESUMO

Here, we present the manually curated Global Catalogue of Pathogens (gcPathogen), an extensive genomic resource designed to facilitate rapid and accurate pathogen analysis, epidemiological exploration and monitoring of antibiotic resistance features and virulence factors. The catalogue seamlessly integrates and analyzes genomic data and associated metadata for human pathogens isolated from infected patients, animal hosts, food and the environment. The pathogen list is supported by evidence from medical or government pathogenic lists and publications. The current version of gcPathogen boasts an impressive collection of 1 164 974 assemblies comprising 986 044 strains from 497 bacterial taxa, 4794 assemblies encompassing 4319 strains from 265 fungal taxa, 89 965 assemblies featuring 13 687 strains from 222 viral taxa, and 646 assemblies including 387 strains from 159 parasitic taxa. Through this database, researchers gain access to a comprehensive 'one-stop shop' that facilitates global, long-term public health surveillance while enabling in-depth analysis of genomes, sequence types, antibiotic resistance genes, virulence factors and mobile genetic elements across different countries, diseases and hosts. To access and explore the data and statistics, an interactive web interface has been developed, which can be accessed at https://nmdc.cn/gcpathogen/. This user-friendly platform allows seamless querying and exploration of the extensive information housed within the gcPathogen database.


Assuntos
Bases de Dados Genéticas , Infecções , Saúde Pública , Humanos , Genoma Bacteriano/genética , Genômica , Fatores de Virulência/genética , Infecções/microbiologia , Infecções/parasitologia , Infecções/virologia , Animais
18.
J Neurosci ; 44(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37945348

RESUMO

The auditory steady-state response (ASSR) is a cortical oscillation induced by trains of 40 Hz acoustic stimuli. While the ASSR has been widely used in clinic measurement, the underlying neural mechanism remains poorly understood. In this study, we investigated the contribution of different stages of auditory thalamocortical pathway-medial geniculate body (MGB), thalamic reticular nucleus (TRN), and auditory cortex (AC)-to the generation and regulation of 40 Hz ASSR in C57BL/6 mice of both sexes. We found that the neural response synchronizing to 40 Hz sound stimuli was most prominent in the GABAergic neurons in the granular layer of AC and the ventral division of MGB (MGBv), which were regulated by optogenetic manipulation of TRN neurons. Behavioral experiments confirmed that disrupting TRN activity has a detrimental effect on the ability of mice to discriminate 40 Hz sounds. These findings revealed a thalamocortical mechanism helpful to interpret the results of clinical ASSR examinations.Significance Statement Our study contributes to clarifying the thalamocortical mechanisms underlying the generation and regulation of the auditory steady-state response (ASSR), which is commonly used in both clinical and neuroscience research to assess the integrity of auditory function. Combining a series of electrophysiological and optogenetic experiments, we demonstrate that the generation of cortical ASSR is dependent on the lemniscal thalamocortical projections originating from the ventral division of medial geniculate body to the GABAergic interneurons in the granule layer of the auditory cortex. Furthermore, the thalamocortical process for ASSR is strictly regulated by the activity of thalamic reticular nucleus (TRN) neurons. Behavioral experiments confirmed that dysfunction of TRN would cause a disruption of mice's behavioral performance in the auditory discrimination task.


Assuntos
Córtex Auditivo , Vigília , Feminino , Masculino , Camundongos , Animais , Camundongos Endogâmicos C57BL , Núcleos Talâmicos/fisiologia , Corpos Geniculados/fisiologia , Córtex Auditivo/fisiologia , Estimulação Acústica/métodos , Neurônios GABAérgicos/fisiologia
19.
Bioinformatics ; 40(2)2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38269610

RESUMO

MOTIVATION: The human microbiome may impact the effectiveness of drugs by modulating their activities and toxicities. Predicting candidate microbes for drugs can facilitate the exploration of the therapeutic effects of drugs. Most recent methods concentrate on constructing of the prediction models based on graph reasoning. They fail to sufficiently exploit the topology and position information, the heterogeneity of multiple types of nodes and connections, and the long-distance correlations among nodes in microbe-drug heterogeneous graph. RESULTS: We propose a new microbe-drug association prediction model, NGMDA, to encode the position and topological features of microbe (drug) nodes, and fuse the different types of features from neighbors and the whole heterogeneous graph. First, we formulate the position and topology features of microbe (drug) nodes by t-step random walks, and the features reveal the topological neighborhoods at multiple scales and the position of each node. Second, as the features of nodes are high-dimensional and sparse, we designed an embedding enhancement strategy based on supervised fully connected autoencoders to form the embeddings with representative features and the more discriminative node distributions. Third, we propose an adaptive neighbor feature fusion module, which fuses features of neighbors by the constructed position- and topology-sensitive heterogeneous graph neural networks. A novel self-attention mechanism is developed to estimate the importance of the position and topology of each neighbor to a target node. Finally, a heterogeneous graph feature fusion module is constructed to learn the long-distance correlations among the nodes in the whole heterogeneous graph by a relationship-aware graph transformer. Relationship-aware graph transformer contains the strategy for encoding the connection relationship types among the nodes, which is helpful for integrating the diverse semantics of these connections. The extensive comparison experimental results demonstrate NGMDA's superior performance over five state-of-the-art prediction methods. The ablation experiment shows the contributions of the multi-scale topology and position feature learning, the embedding enhancement strategy, the neighbor feature fusion, and the heterogeneous graph feature fusion. Case studies over three drugs further indicate that NGMDA has ability in discovering the potential drug-related microbes. AVAILABILITY AND IMPLEMENTATION: Source codes and Supplementary Material are available at https://github.com/pingxuan-hlju/NGMDA.


Assuntos
Redes Neurais de Computação , Semântica , Humanos , Software
20.
Plant Cell ; 34(5): 1980-2000, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35166845

RESUMO

As apple fruits (Malus domestica) mature, they accumulate anthocyanins concomitantly with losing chlorophyll (Chl); however, the molecular pathways and events that coordinate Chl degradation and fruit coloration have not been elucidated. We showed previously that the transcription factor ETHYLENE RESPONSE FACTOR17 (MdERF17) modulates Chl degradation in apple fruit peels and that variation in the pattern of MdERF17 serine (Ser) residues is responsible for differences in its transcriptional regulatory activity. Here, we report that MdERF17 interacts with and is phosphorylated by MAP KINASE4 (MdMPK4-14G). Phosphorylation of MdERF17 at residue Thr67 by MdMPK4-14G is necessary for its transcriptional regulatory activity and its regulation of Chl degradation. We also show that MdERF17 mutants with different numbers of Ser repeat insertions exhibit altered phosphorylation profiles, with more repeats increasing its interaction with MdMPK4. MdMPK4-14G can be activated by exposure to darkness and is involved in the dark-induced degreening of fruit peels. We also demonstrate that greater phosphorylation of MdERF17 by MdMPK4-14G is responsible for the regulation of Chl degradation during light/dark transitions. Overall, our findings reveal the mechanism by which MdMPK4 controls fruit peel coloration.


Assuntos
Malus , Antocianinas/metabolismo , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Malus/genética , Malus/metabolismo , Fosforilação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA