Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38975938

RESUMO

An asymmetric intramolecular spiro-amination to high steric hindering α-C-H bond of 1,3-dicarbonyl via nitrene transfer using inactive aryl azides has been carried out by developing a novel Cp*Ir(III)-SPDO (spiro-pyrrolidine oxazoline) catalyst, thereby enabling the first successful construction of structurally rigid spiro-quaternary indolinone cores with moderate to high yields and excellent enantioselectivities. DFT computations support the presence of double bridging H-F bonds between [SbF6]- and both the ligand and substrate, which favors the plane-differentiation of the enol π-bond for nitrenoid attacking. These findings open up numerous opportunities for the development of new asymmetric nitrene transfer systems.

2.
Drug Metab Dispos ; 52(3): 218-227, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38195522

RESUMO

Cytochrome P450 3A4 (CYP3A4), a key enzyme, is pivotal in metabolizing approximately half of the drugs used clinically. The genetic polymorphism of the CYP3A4 gene significantly influences individual variations in drug metabolism, potentially leading to severe adverse drug reactions (ADRs). In this study, we conducted a genetic analysis on CYP3A4 gene in 1163 Chinese Han individuals to identify the genetic variations that might affect their drug metabolism capabilities. For this purpose, a multiplex polymerase chain reaction (PCR) amplicon sequencing technique was developed, enabling us to perform the genotyping of CYP3A4 gene efficiently and economically on a large scale. As a result, a total of 14 CYP3A4 allelic variants were identified, comprising six previously reported alleles and eight new nonsynonymous variants that were nominated as new allelic variants *39-*46 by the PharmVar Association. Further, functional assessments of these novel CYP3A4 variants were undertaken by coexpressing them with cytochromes P450 oxidoreductase (CYPOR) in Saccharomyces cerevisiae microsomes. Immunoblot analysis indicated that with the exception of CYP3A4.40 and CYP3A4.45, the protein expression levels of most new variants were similar to that of the wild-type CYP3A4.1 in yeast cells. To evaluate their catalytic activities, midazolam was used as a probe drug. The results showed that variant CYP3A4.45 had almost no catalytic activity, whereas the other variants exhibited significantly reduced drug metabolism abilities. This suggests that the majority of the CYP3A4 variants identified in the Chinese population possess markedly altered capacities for drug metabolism. SIGNIFICANCE STATEMENT: In this study, we established a multiplex polymerase chain reaction (PCR) amplicon sequencing method and detected the maximum number of new CYP3A4 variants in a single ethnic population. Additionally, we performed the functional characterizations of these eight novel CYP3A4 allele variants in vitro. This study not only contributes to the understanding of CYP3A4 genetic polymorphism in the Chinese Han population but also holds substantial reference value for their potential clinical applications in personalized medicine.


Assuntos
Citocromo P-450 CYP3A , Polimorfismo Genético , Humanos , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Alelos , Polimorfismo Genético/genética , Microssomos/metabolismo , China
3.
J Nanobiotechnology ; 22(1): 362, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38910259

RESUMO

Patients who suffer from sepsis typically experience acute lung injury (ALI). Extracellular vesicles (EVs) contain miRNAs, which are potentially involved in ALI. However, strategies to screen more effective EV-miRNAs as therapeutic targets are yet to be elucidated. In this study, functional EV-miRNAs were identified based on multiomics analysis of single-cell RNA sequencing of targeted organs and serum EV (sEV) miRNA profiles in patients with sepsis. The proportions of neutrophils and macrophages were increased significantly in the lungs of mice receiving sEVs from patients with sepsis compared with healthy controls. Macrophages released more EVs than neutrophils. MiR-125a-5p delivery by sEVs to lung macrophages inhibited Tnfaip3, while miR-221-3p delivery to lung neutrophils inhibited Fos. Macrophage membrane nanoparticles (MM NPs) loaded with an miR-125a-5p inhibitor or miR-221-3p mimic attenuated the response to lipopolysaccharide (LPS)-induced ALI. Transcriptome profiling revealed that EVs derived from LPS-stimulated bone marrow-derived macrophages (BMDMs) induced oxidative stress in neutrophils. Blocking toll-like receptor, CXCR2, or TNFα signaling in neutrophils attenuated the oxidative stress induced by LPS-stimulated BMDM-EVs. This study presents a novel method to screen functional EV-miRNAs and highlights the pivotal role of macrophage-derived EVs in ALI. MM NPs, as delivery systems of key sEV-miRNA mimics or inhibitors, alleviated cellular responses observed in sepsis-induced ALI. This strategy can be used to reduce septic organ damage, particularly lung damage, by targeting EVs.


Assuntos
Lesão Pulmonar Aguda , Vesículas Extracelulares , Macrófagos , Camundongos Endogâmicos C57BL , MicroRNAs , Nanopartículas , Sepse , Animais , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/tratamento farmacológico , Sepse/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , MicroRNAs/metabolismo , Camundongos , Nanopartículas/química , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Humanos , Masculino , Lipopolissacarídeos , Neutrófilos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Multiômica
4.
J Immunol ; 207(8): 2118-2128, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34507947

RESUMO

Sepsis is a life-threatening organ dysfunction caused by a dysfunctional host response to infection. Neutrophils play a protective role by releasing antibacterial proteins or by phagocytizing bacteria. However, excess neutrophils can induce tissue damage. Recently, a novel intercellular communication pathway involving extracellular vesicles (EVs) has garnered considerable attention. However, whether EVs secreted by macrophages mediate neutrophil recruitment to infected sites has yet to be studied. In this study, we assessed the chemotactic effect of EVs isolated from mouse Raw264.7 macrophages on mouse neutrophils and found that CXCL2 was highly expressed in these EVs. By regulating CXCL2 in Raw264.7 macrophages, we found that CXCL2 on macrophage EVs recruited neutrophils in vitro and in vivo. The CXCL2 EVs activated the CXCR2/PKC/NOX4 pathway and induced tissue damage. This study provides information regarding the mechanisms underlying neutrophil recruitment to tissues and proposes innovative strategies and targets for the treatment of sepsis.


Assuntos
Quimiocina CXCL2/metabolismo , Vesículas Extracelulares/metabolismo , Macrófagos/imunologia , NADPH Oxidase 4/metabolismo , Neutrófilos/imunologia , Proteína Quinase C/metabolismo , Sepse/imunologia , Animais , Ceco/cirurgia , Modelos Animais de Doenças , Doenças do Sistema Imunitário , Transtornos Leucocíticos , Camundongos , Camundongos Endogâmicos C57BL , Ativação de Neutrófilo , Transdução de Sinais
5.
Eur J Clin Pharmacol ; 79(10): 1315-1320, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37458773

RESUMO

BACKGROUND: Existing pharmacogenetic algorithms cannot fully explain warfarin dose variability in all patients. CYP2C9*13 is an important allelic variant in the Han Chinese population. However, adjustment of warfarin dosing in CYP2C9*13 variant carriers remains unclear. To the best of our knowledge, this study is the first to assess the effects of adjusting warfarin dosages in Han Chinese patients harbouring CYP2C9*13 variants. METHODS: In total, 971 warfarin-treated Han Chinese patients with atrial fibrillation were enrolled in this study. Clinical data were collected, and CYP2C9*2, *3, *13 and VKORC1-1639 G > A variants were genotyped. We quantitatively analysed the effect of CYP2C9*13 on warfarin maintenance dose and provided multiplicative adjustments for CYP2C9*13 using validated pharmacogenetic algorithms. RESULTS: Approximately 0.6% of the Han Chinese population carried CYP2C9*13 variant, and the genotype frequency was between those of CYP2C9*2 and CYP2C9*3. The warfarin maintenance doses were significantly reduced in CYP2C9*13 carriers. When CYP2C9*13 variants were not considered, the pharmacogenetic algorithms overestimated warfarin maintenance doses by 1.03-1.16 mg/d on average. The actual warfarin dose in CYP2C9*13 variant carriers was approximately 40% lower than the algorithm-predicted dose. Adjusting the warfarin-dosing algorithm according to the CYP2C9*13 allele could reduce the dose prediction error. CONCLUSION: Our study showed that the algorithm-predicted doses should be lowered for CYP2C9*13 carriers. Inclusion of the CYP2C9*13 variant in the warfarin-dosing algorithm tends to predict the warfarin maintenance dose more accurately and improves the efficacy and safety of warfarin administration in Han Chinese patients.


Assuntos
Anticoagulantes , Varfarina , Humanos , Citocromo P-450 CYP2C9/genética , População do Leste Asiático , Vitamina K Epóxido Redutases/genética , Genótipo , Algoritmos , Relação Dose-Resposta a Droga
6.
Pharm Biol ; 61(1): 356-361, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36728978

RESUMO

CONTEXT: Poziotinib and vonoprazan are two drugs mainly metabolized by CYP3A4. However, the drug-drug interaction between them is unknown. OBJECTIVE: To study the interaction mechanism and pharmacokinetics of poziotinib on vonoprazan. MATERIALS AND METHODS: In vitro experiments were performed with rat liver microsomes (RLMs) and the contents of vonoprazan and its metabolite were then determined with UPLC-MS/MS after incubation of RLMs with vonoprazan and gradient concentrations of poziotinib. For the in vivo experiment, rats in the poziotinib treated group were given 5 mg/kg poziotinib by gavage once daily for 7 days, and the control group was only given 0.5% CMC-Na. On Day 8, tail venous blood was collected at different time points after the gavage administration of 10 mg/kg vonoprazan, and used for the quantification of vonoprazan and its metabolite. DAS and SPSS software were used for the pharmacokinetic and statistical analyses. RESULTS: In vitro experimental data indicated that poziotinib inhibited the metabolism of vonoprazan (IC50 = 10.6 µM) in a mixed model of noncompetitive and uncompetitive inhibition. The inhibitory constant Ki was 0.574 µM and the binding constant αKi was 2.77 µM. In vivo experiments revealed that the AUC(0-T) (15.05 vs. 90.95 µg/mL·h) and AUC(0-∞) (15.05 vs. 91.99 µg/mL·h) of vonoprazan increased significantly with poziotinib pretreatment. The MRT(0-∞) of vonoprazan increased from 2.29 to 5.51 h, while the CLz/F value decreased from 162.67 to 25.84 L/kg·h after pretreatment with poziotinib. CONCLUSIONS: Poziotinib could significantly inhibit the metabolism of vonoprazan and more care may be taken when co-administered in the clinic.


Assuntos
Microssomos Hepáticos , Espectrometria de Massas em Tandem , Ratos , Animais , Cromatografia Líquida , Interações Medicamentosas , Microssomos Hepáticos/metabolismo
7.
Nano Lett ; 21(5): 1982-1991, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33624495

RESUMO

Hydrogen therapy is an emerging and highly promising strategy for the treatment of inflammation-related diseases. However, nonpolarity and low solubility of hydrogen under the physiological conditions results in a limited therapeutic effect. Herein, we develop a biocompatible magnesium micromotor coated with hyaluronic acid as a hydrogen generator for precise rheumatoid arthritis management. The hydrogen bubbles generated locally not only function as a propellant for the motion but also function as the active ingredient for reactive oxygen species (ROS) and inflammation scavenging. Under ultrasound guidance, the micromotors are injected intra-articularly, and the dynamics of the micromotors can be visualized. By scavenging ROS and inflammation via active hydrogen, the oxidative stress is relieved and the levels of inflammation cytokines are reduced by our micromotors, showing prominent therapeutic efficacy in ameliorating joint damage and suppressing the overall arthritis severity toward a collagen-induced arthritis rat model. Therefore, our micromotors show great potential for the therapy of rheumatoid arthritis and further clinical transformation.


Assuntos
Artrite Experimental , Artrite Reumatoide , Animais , Artrite Reumatoide/diagnóstico por imagem , Artrite Reumatoide/tratamento farmacológico , Hidrogênio , Magnésio , Ratos , Espécies Reativas de Oxigênio
8.
Nano Lett ; 21(8): 3518-3526, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33848170

RESUMO

Inducing neural stem cells to differentiate and replace degenerated functional neurons represents the most promising approach for neural degenerative diseases including Parkinson's disease, Alzheimer's disease, etc. While diverse strategies have been proposed in recent years, most of these are hindered due to uncontrollable cell fate and device invasiveness. Here, we report a minimally invasive micromotor platform with biodegradable helical Spirulina plantensis (S. platensis) as the framework and superparamagnetic Fe3O4 nanoparticles/piezoelectric BaTiO3 nanoparticles as the built-in function units. With a low-strength rotational magnetic field, this integrated micromotor system can perform precise navigation in biofluid and achieve single-neural stem cell targeting. Remarkably, by tuning ultrasound intensity, thus the local electrical output by the motor, directed differentiation of the neural stem cell into astrocytes, functional neurons (dopamine neurons, cholinergic neurons), and oligodendrocytes, can be achieved. This micromotor platform can serve as a highly controllable wireless tool for bioelectronics and neuronal regenerative therapy.


Assuntos
Óxido Ferroso-Férrico , Células-Tronco Neurais , Diferenciação Celular , Neurônios Dopaminérgicos , Campos Magnéticos
9.
Nano Lett ; 21(19): 8086-8094, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34559543

RESUMO

Inspired by the tactic organisms in Nature that can self-direct their movement following environmental stimulus gradient, we proposed a DNase functionalized Janus nanoparticle (JNP) nanomotor system for the first time, which can be powered by ultralow nM to µM levels of DNA. The system exhibited interesting chemotactic behavior toward a DNA richer area, which is physiologically related with many diseases including tumors. In the presence of the subtle DNA gradient generated by apoptotic tumor cells, the cargo loaded nanomotors were able to sense the DNA signal released by the cells and demonstrate directional motion toward tumor cells. For our system, the subtle DNA gradient by a small amount (10 µL) of tumor cells is sufficient to induce the chemotaxis behavior of self-navigating and self-targeting ability of our nanomotor system, which promises to shed new light for tumor diagnosis and therapy.


Assuntos
Quimiotaxia , Neoplasias , DNA , Humanos , Movimento (Física) , Neoplasias/tratamento farmacológico
10.
J Nanobiotechnology ; 19(1): 371, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789285

RESUMO

BACKGROUND: Effective amelioration of neuronal damages in the case of cerebral ischemic stroke (CIS) is essential for the protection of brain tissues and their functional recovery. However, most drugs can not penetrate the blood-brain barrier (BBB), resulting in the poor therapeutic outcomes. RESULTS: In this study, the derivatization and dual targeted delivery technologies were used to actively transport antioxidant melatonin (MLT) into the mitochondria of oxidative stress-damaged cells in brain tissues. A mitochondrial targeting molecule triphenylphosphine (TPP) was conjugated to melatonin (TPP-MLT) to increase the distribution of melatonin in intracellular mitochondria with the push of mitochondrial transmembrane potential. Then, TPP-MLT was encapsulated in dual targeted micelles mediated by TGN peptide (TGNYKALHPHNG) with high affinity for BBB and SHp peptide (CLEVSRKNG) for the glutamate receptor of oxidative stress-damaged neural cells.TGN/SHp/TPP-MLT micelles could effectively scavenge the overproduced ROS to protect neuronal cells from oxidative stress injury during CIS occurrence, as reflected by the improved infarct volume and neurological deficit in CIS model animals. CONCLUSIONS: These promising results showed this stepwise-targeting drug-loaded micelles potentially represent a significant advancement in the precise treatment of CIS.


Assuntos
Antioxidantes , Isquemia Encefálica/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Melatonina , Compostos Organofosforados , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Encéfalo/efeitos dos fármacos , Linhagem Celular , Melatonina/química , Melatonina/farmacologia , Camundongos , Micelas , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Compostos Organofosforados/química , Compostos Organofosforados/farmacologia , Estresse Oxidativo/efeitos dos fármacos
11.
Pharm Biol ; 59(1): 457-464, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33899675

RESUMO

CONTEXT: Dacomitinib and poziotinib, irreversible ErbB family blockers, are often used for treatment of non-small cell lung cancer (NSCLC) in the clinic. OBJECTIVE: This study investigates the effect of dacomitinib on the pharmacokinetics of poziotinib in rats. MATERIALS AND METHODS: Twelve Sprague-Dawley rats were randomly divided into two groups: the test group (20 mg/kg dacomitinib for 14 consecutive days) and the control group (equal amounts of vehicle). Each group was given an oral dose of 10 mg/kg poziotinib 30 min after administration of dacomitinib or vehicle at the end of the 14 day administration. The concentration of poziotinib in plasma was quantified by UPLC-MS/MS. Both in vitro effects of dacomitinib on poziotinib and the mechanism of the observed inhibition were studied in rat liver microsomes and human liver microsomes. RESULTS: When orally administered, dacomitinib increased the AUC, Tmax and decreased CL of poziotinib (p < 0.05). The IC50 values of M1 in RLM, HLM and CYP3A4 were 11.36, 30.49 and 19.57 µM, respectively. The IC50 values of M2 in RLM, HLM and CYP2D6 were 43.69, 0.34 and 0.11 µM, respectively, and dacomitinib inhibited poziotinib by a mixed way in CYP3A4 and CYP2D6. The results of the in vivo experiments were consistent with those of the in vitro experiments. CONCLUSIONS: This research demonstrates that a drug-drug interaction between poziotinib and dacomitinib possibly exists when readministered with poziotinib; thus, clinicians should pay attention to the resulting changes in pharmacokinetic parameters and accordingly, adjust the dose of poziotinib in clinical settings.


Assuntos
Microssomos Hepáticos/metabolismo , Quinazolinas/farmacocinética , Quinazolinonas/farmacologia , Administração Oral , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Área Sob a Curva , Cromatografia Líquida de Alta Pressão , Interações Medicamentosas , Humanos , Concentração Inibidora 50 , Quinazolinas/administração & dosagem , Quinazolinonas/administração & dosagem , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
12.
Small ; 16(27): e1906184, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32130759

RESUMO

Inspired by the highly versatile natural motors, artificial micro-/nanomotors that can convert surrounding energies into mechanical motion and accomplish multiple tasks are devised. In the past few years, micro-/nanomotors have demonstrated significant potential in biomedicine. However, the practical biomedical applications of these small-scale devices are still at an infant stage. For successful bench-to-bed translation, biocompatibility of micro-/nanomotor systems is the central issue to be considered. Herein, the recent progress in micro-/nanomotors in biocompatibility is reviewed, with a special focus on their biomedical applications. Through close collaboration between researches in the nanoengineering, material chemistry, and biomedical fields, it is expected that a promising real-world application platform based on micro-/nanomotors will emerge in the near future.


Assuntos
Tecnologia Biomédica , Nanoestruturas , Nanotecnologia , Tecnologia Biomédica/tendências , Nanotecnologia/tendências
13.
Chem Res Toxicol ; 33(1): 172-180, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31560202

RESUMO

As a new atypical antipsychotic, brexpiprazole is primarily metabolized by cytochrome P450 3A4 (CYP3A4). However, genetic polymorphisms in CYP3A4 cause wide variability in individuals' responses to brexpiprazole, leading to unpredictable adverse side effects or even therapeutic failure. The present study was designed to systematically study the effects of 26 recombinant CYP3A4 variants on the metabolism of brexpiprazole and investigate their enzymatic activity. Wild-type CYP3A4 and the 26 variants were incubated with the substrate brexpiprazole for 30 min at 37 °C. The metabolite DM-3411 was detected using ultraperformance liquid chromatography-tandem mass spectrometry. The activity of the wild-type CYP3A4 and 26 of its variants was analyzed. Then, the mechanism underlying the changes in enzyme function was observed using molecular dynamics simulations and molecular docking. Compared with CYP3A4.1, the enzymatic activities of CYP3A4.19, -.24, and -.28 were not significantly different (from 91.82% to 96.25%), but CYP3A4.14 and CYP3A4.15 exhibited higher enzyme activity (from 117.9 to 127.5%). The remaining 21 isoforms, including CYP3A4.2, -.3, -.4, -.5, -.7, -.8, -.9, -.10, -.11, -.12, -.13, -.16, -.17, -.18, -.20, -.23, -.29, -.31, -.32, -.33 and -.34, displayed lower enzymatic activities (from 2.90% to 75.72%). The results obtained from computer modeling indicated that weak binding affinity impaired the function of CYP3A4.32. Mutations that occur around the active site might lead to a loss of enzymatic activity, while the variants located far away from the active site perhaps had little effect on function of CYP3A4. These comprehensive data provide a reference and prediction for treatment strategies and risk assessments of brexpiprazole.


Assuntos
Antipsicóticos/metabolismo , Citocromo P-450 CYP3A/metabolismo , Agonistas de Dopamina/metabolismo , Quinolonas/metabolismo , Serotoninérgicos/metabolismo , Tiofenos/metabolismo , Citocromo P-450 CYP3A/genética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas Recombinantes/metabolismo
14.
Pharm Biol ; 58(1): 225-230, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32202190

RESUMO

Context: Naringenin and tofacitinib are often used together for treatment of rheumatoid arthritis in Chinese clinics.Objective: This experiment investigates the effect of naringenin on the pharmacokinetics of tofacitinib in rats.Materials and methods: Twelve Sprague-Dawley rats were randomly divided into two groups (experimental group and control group). The experimental group was pre-treated with naringenin (150 mg/kg/day) for two weeks before dosing tofacitinib, and equal amounts of CMC-Na solution in the control group. After a single oral administration of 5 mg/kg of tofacitinib, 50 µL blood samples were directly collected into 1.5 mL heparinized tubes via the caudal vein at 0.083, 0.5, 1, 2, 3, 4, 6, 8, 10, 12 and 24 h. The plasma concentration of tofacitinib was quantified by UPLC/MS-MS.Results: Results indicated that naringenin could significantly affect the pharmacokinetics of tofacitinib. The AUC0-24 of tofacitinib was increased from 1222.81 ± 222.07 to 2016.27 ± 481.62 ng/mL/h, and the difference was significant (p < 0.05). Compared with the control group, the Tmax was increased from 0.75 ± 0.29 to 3.00 ± 0.00 h (p < 0.05), and the MRT(0-24) was increased from 4.90 ± 0.51 to 6.57 ± 0.66 h (p < 0.05), but the clearance was obviously decreased from 4.10 ± 0.72 to 2.42 ± 0.70 L/h/kg (p < 0.05) in experimental group. Although the Cmax and t1/2 of tofacitinib were increased, there were no significant differences (p > 0.05).Conclusions: This research demonstrated a drug-drug interaction between naringenin and tofacitinib possibly when preadministered with naringenin; thus, we should pay attention to this possibility in the clinic.


Assuntos
Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/farmacocinética , Flavanonas/farmacologia , Piperidinas/farmacologia , Piperidinas/farmacocinética , Pirimidinas/farmacologia , Pirimidinas/farmacocinética , Pirróis/farmacologia , Pirróis/farmacocinética , Administração Oral , Animais , Anti-Inflamatórios/administração & dosagem , Área Sob a Curva , Artrite Reumatoide/tratamento farmacológico , Relação Dose-Resposta a Droga , Interações Medicamentosas , Feminino , Flavanonas/administração & dosagem , Piperidinas/administração & dosagem , Piperidinas/sangue , Pirimidinas/administração & dosagem , Pirimidinas/sangue , Pirróis/administração & dosagem , Pirróis/sangue , Ratos Sprague-Dawley , Razão Sinal-Ruído
15.
Pharm Biol ; 58(1): 630-635, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32633174

RESUMO

CONTEXT: Rivaroxaban and ticagrelor are two common drugs for the treatment of atrial fibrillation and acute coronary syndrome. However, the drug-drug interaction between them is still unknown. OBJECTIVE: To investigate the effects of ticagrelor on the pharmacokinetics of rivaroxaban in rats both in vivo and in vitro. MATERIALS AND METHODS: A sensitive and reliable UPLC-MS/MS method was developed for the determination of rivaroxaban in rat plasma. Ten Sprague-Dawley rats were randomly divided into ticagrelor pre-treated group (10 mg/kg/day for 14 days) and control group. The pharmacokinetics of orally administered rivaroxaban (10 mg/kg, single dose) with or without ticagrelor pre-treatment was investigated with developed UPLC-MS/MS method. Additionally, Sprague-Dawley rat liver microsomes were also used to investigate the drug-drug interaction between these two drugs in vitro. RESULTS: The C max (221.34 ± 53.33 vs. 691.18 ± 238.31 ng/mL) and the AUC(0-t) (1060.97 ± 291.21 vs. 3483.03 ± 753.83 µg·h/L) of rivaroxaban increased significantly (p < 0.05) with ticagrelor pre-treatment. The MRT(0-∞) of rivaroxaban increased from 4.41 ± 0.79 to 5.97 ± 1.11 h, while the intrinsic clearance decreased from 9.93 ± 2.55 to 2.89 ± 0.63 L/h/kg (both p < 0.05) after pre-treated with ticagrelor. Enzyme kinetic study indicated that ticagrelor decreased rivaroxaban metabolic clearance with the IC50 value of 14.04 µmol/L. CONCLUSIONS: Our in vivo and in vitro results demonstrated that there is a drug-drug interaction between ticagrelor and rivaroxaban in rats. Further studies need to be carried out to verify whether similar interactions truly apply in humans and whether these interactions have clinical significance.


Assuntos
Inibidores do Fator Xa/farmacocinética , Microssomos Hepáticos/metabolismo , Inibidores da Agregação Plaquetária/farmacocinética , Rivaroxabana/farmacocinética , Ticagrelor/farmacocinética , Animais , Interações Medicamentosas/fisiologia , Inibidores do Fator Xa/sangue , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Inibidores da Agregação Plaquetária/sangue , Ratos , Ratos Sprague-Dawley , Rivaroxabana/sangue , Ticagrelor/sangue
16.
Angew Chem Int Ed Engl ; 59(49): 21954-21958, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32851781

RESUMO

A tandem Bischler-Napieralski/semipinacol rearrangement reaction has been developed for the purpose of assembling a bis(spirocyclic) indole framework, a privileged structural unit of aspidofractinine-type monoterpenoid indole alkaloids, and was used in combination with a subsequent Mannich reaction to expeditiously construct the central bridged bicyclo[2.2.1]heptane ring system of these molecules with contiguous quaternary centers. The development of this novel strategy culminated in the collective total synthesis of four aspidofractinine alkaloids.

18.
Biomed Chromatogr ; 31(3)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27565758

RESUMO

In this work, a sensitive and selective UPLC-MS/MS method for determination of ardisiacrispin A in rat plasma was developed. Cyasterone used as an internal standard (IS) and protein precipitation by acetonitrile-methanol (9:1, v/v) was used to prepare samples. Chromatographic separation was achieved on a UPLC BEH C18 column (2.1 × 100 mm, 1.7 µm) with 0.1% formic acid and acetonitrile as the mobile phase with gradient elution. An electrospray ionization source was applied and operated in positive ion mode; multiple reaction monitoring mode was used for quantification using target fragment ions m/z 1083.5 → 407.1 for ardisiacrispin A and m/z 521.3 → 485.2 for IS. Calibration plots were linear throughout the range 5-2000 ng/mL for ardisiacrispin A in rat plasma. Mean recoveries of ardisiacrispin A in rat plasma ranged from 80.4 to 92.6%. The values of RSD of intra- and inter-day precision were both <11%. The accuracy of the method was between 97.3 and 105.6%. The method was successfully applied to pharmacokinetic study of ardisiacrispin A after intravenous administration in rats.


Assuntos
Cromatografia Líquida/métodos , Ácido Oleanólico/análogos & derivados , Saponinas/sangue , Espectrometria de Massas em Tandem/métodos , Animais , Masculino , Ácido Oleanólico/sangue , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes
20.
Pharm Biol ; 55(1): 1223-1227, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28253826

RESUMO

CONTEXT: Codeine, also known as 3-methylmorphine, is an opiate used to treat pain, as a cough medicine and for diarrhoea. No study on the effects of codeine on the metabolic capacity of CYP enzyme is reported. OBJECTIVE: In order to investigate the effects of codeine on the metabolic capacity of cytochrome P450 (CYP) enzymes, a cocktail method was employed to evaluate the activities of CYP2B1, CYP2D1, CYP1A2, CYP3A2 and CYP2C11. MATERIALS AND METHODS: Sprague-Dawley rats were randomly divided into codeine group (low, medium, high) and control group. The codeine group rats were given 4, 8, 16 mg/kg (low, medium, high) codeine by continuous intragastric administration for 14 days. Five probe drugs bupropion, metroprolol, phenacetin, midazolam and tolbutamide were given to rats through intragastric administration, and the plasma concentrations were determined by UPLC-MS/MS. RESULTS AND CONCLUSION: The pharmacokinetic parameters of bupropion and metroprolol experienced obvious change with AUC(0-t), Cmax increased and CL decreased for bupropion in medium dosage group and midazolam low dosage group. This result indicates that the 14 day-intragastric administration of codeine may inhibit the metabolism of bupropion (CYP2B1) and midazolam (CYP3A2) in rat. Additional, there are no statistical differences for albumin (ALB), alkaline phosphatase (ALP), creatinine (Cr) after 14 intragastric administration of codeine, while alanine aminotransferase (ALT), aspartate aminotransferase (AST), uric acid (UA) increased compared to control group. The biomedical test results show continuous 14 day-intragastric administration of codeine would cause liver damage.


Assuntos
Codeína/metabolismo , Codeína/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Animais , Bupropiona/metabolismo , Relação Dose-Resposta a Droga , Interações Medicamentosas/fisiologia , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Isoenzimas/metabolismo , Masculino , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Tolbutamida/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA