Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Reproduction ; 167(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37947291

RESUMO

In brief: Corticotropin-releasing hormone binding protein (CRHBP) is fundamental to the stress response and plays an important role in parturition during pregnancy. This study shows that abnormal CRHBP expression could be an early warning sign of recurrent pregnancy loss and that CRHBP knockdown could suppress HTR8/SVneo cell invasion by the PKC signaling pathway via interacting with CRH receptor 2. Abstract: Trophoblast invasion is critical for placentation and pregnancy success. Trophoblast dysfunction results in many pregnancy complications, including recurrent pregnancy loss (RPL). Corticotropin-releasing hormone binding protein (CRHBP) is fundamental to the stress response and plays an important role in parturition during pregnancy via binding with CRH. To further characterize its function in early pregnancy, we explored the expression of CRHBP in villi during early pregnancy. Compared with normal pregnant women, we demonstrated that the expression of CRHBP decreased in the trophoblasts and villi in RPL patients and that knockdown of CRHBP expression could suppress HTR8/SVneo cell invasion significantly. Our further exploration indicated that the capacity of CRHBP for regulating trophoblast invasion was associated with the PKC signaling pathway via interacting with CRH receptor 2. These findings might provide a new fundamental mechanism for successful pregnancy and a new diagnostic and therapeutic target for RPL.


Assuntos
Aborto Habitual , Receptores de Hormônio Liberador da Corticotropina , Gravidez , Humanos , Feminino , Receptores de Hormônio Liberador da Corticotropina/genética , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Regulação para Baixo , Hormônio Liberador da Corticotropina/genética , Hormônio Liberador da Corticotropina/metabolismo , Linhagem Celular , Trofoblastos/metabolismo , Aborto Habitual/metabolismo , Movimento Celular
2.
Curr Issues Mol Biol ; 45(11): 8767-8779, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37998728

RESUMO

N6-methyladenosine (m6A) modification is a prevalent modification of messenger ribonucleic acid (mRNA) in eukaryote cells and is closely associated with recurrent pregnancy loss (RPL). Circular RNAs (circRNAs) play critical roles in embryo implantation, trophoblast invasion and immune balance, which are important events during pregnancy. However, how m6A modification is regulated by circRNAs and the potential regulatory mechanism of circRNAs on RPL occurrence remain largely unclassified. We displayed the expression profiles of circRNAs and mRNAs in the decidua of normal pregnancies and RPL patients based on circRNA sequencing and the Gene Expression Omnibus database. A total of 936 differentially expressed circRNAs were identified, including 509 upregulated and 427 downregulated circRNAs. Differentially expressed circRNAs were enriched in immune, metabolism, signaling and other related pathways via the analysis of Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. The competitive endogenous RNA (ceRNA) network was predicted to supply the possible role of circRNAs in RPL occurrence, and we further analyzed the profiles of nine m6A regulators (seven readers, one writer and one eraser) managed by circRNAs in this network. We also showed the expression profiles of circRNAs in the serum, trying to seek a potential biomarker to help in the diagnosis of RPL. These data imply that circRNAs are involved in pathogenesis of RPL by changing immune activities, metabolism and m6A modification in the ceRNA network. Our study might provide assistance in exploring the pathogenesis and diagnosis of RPL.

3.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36675047

RESUMO

T-cell immunoglobulin mucin-3 (Tim-3) is an important checkpoint that induces maternal-fetal tolerance in pregnancy. Macrophages (Mφs) play essential roles in maintaining maternal-fetal tolerance, remodeling spiral arteries, and regulating trophoblast biological behaviors. In the present study, the formation of the labyrinth zone showed striking defects in pregnant mice treated with Tim-3 neutralizing antibodies. The adoptive transfer of Tim-3+Mφs, rather than Tim-3-Mφs, reversed the murine placental dysplasia resulting from Mφ depletion. With the higher production of angiogenic growth factors (AGFs, including PDGF-AA, TGF-α, and VEGF), Tim-3+dMφs were more beneficial in promoting the invasion and tube formation ability of trophoblasts. The blockade of AGFs in Tim-3+Mφs led to the narrowing of the labyrinthine layer of the placenta, compromising maternal-fetal tolerance, and increasing the risk of fetal loss. Meanwhile, the AGFs-treated Tim-3-Mφs could resolve the placental dysplasia and fetal loss resulting from Mφ depletion. These findings emphasized the vital roles of Tim-3 in coordinating Mφs-extravillous trophoblasts interaction via AGFs to promote pregnancy maintenance and in extending the role of checkpoint signaling in placental development. The results obtained in our study also firmly demonstrated that careful consideration of reproductive safety should be taken when selecting immune checkpoint and AGF blockade therapies in real-world clinical care.


Assuntos
Comunicação Celular , Macrófagos , Placenta , Manutenção da Gravidez , Trofoblastos , Animais , Feminino , Camundongos , Gravidez , Decídua/metabolismo , Receptor Celular 2 do Vírus da Hepatite A/genética , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Macrófagos/metabolismo , Placenta/metabolismo , Manutenção da Gravidez/genética , Manutenção da Gravidez/fisiologia , Trofoblastos/metabolismo , Comunicação Celular/genética , Comunicação Celular/fisiologia
4.
Int J Mol Sci ; 24(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37175543

RESUMO

Iron is necessary for various critical biological processes, but iron overload is also dangerous since labile iron is redox-active and toxic. We found that low serum iron and decidual local iron deposition existed simultaneously in recurrent pregnancy loss (RPL) patients. Mice fed with a low-iron diet (LID) also showed iron deposition in the decidua and adverse pregnancy outcomes. Decreased ferroportin (cellular iron exporter) expression that inhibited the iron export from decidual stromal cells (DSCs) might be the reason for local iron deposition in DSCs from low-serum-iron RPL patients and LID-fed mice. Iron supplementation reduced iron deposition in the decidua of spontaneous abortion models and improved pregnancy outcomes. Local iron overload caused ferroptosis of DSCs by downregulating glutathione (GSH) and glutathione peroxidase 4 levels. Both GSH and cystine (for the synthesis of GSH) supplementation reduced iron-induced lipid reactive oxygen species (ROS) and cell death in DSCs. Ferroptosis inhibitor, cysteine, and GSH supplementation all effectively attenuated DSC ferroptosis and reversed embryo loss in the spontaneous abortion model and LPS-induced abortion model, making ferroptosis mitigation a potential therapeutic target for RPL patients. Further study that improves our understanding of low-serum-iron-induced DSC ferroptosis is needed to inform further clinical evaluations of the safety and efficacy of iron supplementation in women during pregnancy.


Assuntos
Aborto Habitual , Ferroptose , Sobrecarga de Ferro , Gravidez , Humanos , Feminino , Animais , Camundongos , Ferro/metabolismo , Ferroptose/fisiologia , Aborto Habitual/metabolismo , Células Estromais/metabolismo , Sobrecarga de Ferro/metabolismo
5.
FASEB J ; 35(8): e21754, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34191338

RESUMO

To obtain a successful pregnancy, the establishment of maternal-fetal tolerance and successful placentation are required to be established. Disruption of this immune balance and/or inadequate placental perfusion is believed to be associated with a lot of pregnancy-related complications, such as recurrent spontaneous abortion, pre-eclampsia, and fetal intrauterine growth restriction. Extravillous trophoblasts (EVTs) have the unique ability to instruct decidual immune cells (DICs) to develop a regulatory phenotype for fetal tolerance. Utilizing immortalized human first trimester extravillous trophoblast cells and primary EVTs, we found that DICs promote EVT function and placental development. We have previously shown that checkpoints T-cell immunoglobulin mucin-3 (Tim-3) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) are important for DIC function. In the present study, we showed that blockade of Tim-3 and CTLA-4 pathways leaded to the abnormal DICs-EVTs interaction, poor placental development, and increased fetal loss. Treatment with IL-4 and IL-10 could rescue the adverse effects of targeting Tim-3 and CTLA-4 on the pregnancy outcome. Hence, the reproductive safety must be a criterion considered in the assessment of immuno-therapeutic agents. In addition, IL-4 and IL-10 may represent novel therapeutic strategies to prevent pregnancy loss induced by checkpoint inhibition.


Assuntos
Antígeno CTLA-4/imunologia , Decídua/imunologia , Receptor Celular 2 do Vírus da Hepatite A/imunologia , Interleucina-10/imunologia , Interleucina-4/imunologia , Trofoblastos/imunologia , Animais , Antígeno CTLA-4/antagonistas & inibidores , Comunicação Celular/imunologia , Células Cultivadas , Decídua/citologia , Perda do Embrião/imunologia , Feminino , Receptor Celular 2 do Vírus da Hepatite A/antagonistas & inibidores , Humanos , Tolerância Imunológica , Interleucina-10/administração & dosagem , Interleucina-4/administração & dosagem , Masculino , Troca Materno-Fetal/imunologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos CBA , Camundongos Endogâmicos DBA , Modelos Imunológicos , Placentação/imunologia , Gravidez , Resultado da Gravidez , Transdução de Sinais/imunologia , Trofoblastos/citologia
6.
J Biomed Sci ; 29(1): 101, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36419076

RESUMO

BACKGROUND: Sleep disturbance can cause adverse pregnancy outcomes by changing circadian gene expression. The potential mechanisms remain unclear. Decidualization is critical for the establishment and maintenance of normal pregnancy, which can be regulated by circadian genes. Whether Rev-erbα, a critical circadian gene, affects early pregnancy outcome by regulating decidualization needs to be explored. METHODS: QPCR, western blot and artificial decidualization mouse model were used to confirm the effect of sleep disturbance on Rev-erbα expression and decidualization. The regulatory mechanism of Rev-erbα on decidualization was assessed using QPCR, western blot, RNA-Seq, and Chip-PCR. Finally, sleep disturbance mouse model was used to investigate the effect of therapeutic methods targeting Rev-erbα and interleukin 6 (IL-6) on improving adverse pregnancy outcomes induced by sleep disturbance. RESULTS: Dysregulation of circadian rhythm due to sleep disturbance displayed abnormal expression profile of circadian genes in uterine including decreased level of Rev-erbα, accompanied by defective decidualization. Rev-erbα could regulate decidualization by directly repressing IL-6, which reduced the expression of CCAAT/enhancer-binding protein ß (C/EBPß) and its target insulin-like growth factor binding protein 1 (IGFBP1), the marker of decidualization, by inhibiting progesterone receptors (PR) expression. Moreover, deficient decidualization, higher abortion rate and lower implantation number were exhibited in the mouse models with sleep disturbance compared with those in normal mouse. Pharmacological activation of Rev-erbα or neutralization of IL-6 alleviated the adverse effect of sleep disturbance on pregnancy outcomes. CONCLUSIONS: Taken together, Rev-erbα regulated decidualization via IL-6-PR-C/EBPß axis and might be a connector between sleep and pregnancy outcome. Therapies targeting Rev-erbα and IL-6 might help improving adverse pregnancy outcomes induced by sleep disturbance.


Assuntos
Interleucina-6 , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares , Animais , Feminino , Camundongos , Gravidez , Ritmo Circadiano/genética , Interleucina-6/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Receptores de Interleucina-6 , Sono , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo
7.
BMC Immunol ; 22(1): 57, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34399700

RESUMO

BACKGROUND: Circadian rhythm is an important player for reproduction. Rev-erbα, a significant clock gene, is involved in regulating cell differentiation, inflammation and metabolism. Macrophage polarization plays crucial roles in immune tolerance at the maternal-fetus interface, which also modulates the initiation and resolution of inflammation. Alteration of macrophage polarization induces adverse pregnancy outcomes such as infertility, recurrent spontaneous abortion and preterm labor. RESULTS: Decidual macrophages from LPS-induced mice abortion model displayed M1-like bias, accompanied by decreased expression of Rev-erbα. SR9009, an agonist of Rev-erbα, may reduce lipopolysaccharide (LPS)-induced M1 polarization of macrophages via activation of PI3K but not NF-κB signaling pathway. Furthermore, SR9009 could reduce M1-like polarization of decidual macrophages induced by LPS and attenuate LPS-induced resorption rates in mice model. CONCLUSIONS: Both in vivo and in vitro experiments demonstrated that the pharmacological activation of Rev-erbα using SR9009 could attenuate the effect of LPS on macrophage polarization and protect pregnancy. This study may provide a potential therapeutic strategy for miscarriage induced by inflammation.


Assuntos
Aborto Espontâneo/prevenção & controle , Decídua/imunologia , Inflamação/imunologia , Macrófagos/imunologia , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Animais , Diferenciação Celular , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Lipopolissacarídeos/imunologia , Camundongos , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/agonistas , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Gravidez , Pirrolidinas/farmacologia , Transdução de Sinais , Células Th1/imunologia , Tiofenos/farmacologia , Células U937
8.
Biol Reprod ; 104(2): 410-417, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-31329823

RESUMO

Normal pregnancy is associated with several immune adaptations in both systemic and local maternal-fetal interface to allow the growth of semi-allogeneic conceptus. A failure in maternal immune tolerance to the fetus may result in abnormal pregnancies, such as recurrent spontaneous abortion. The regulation of T-cell homeostasis during pregnancy has important implications for maternal tolerance and immunity. Cytotoxic T-lymphocyte antigen-4 (CTLA-4) and T-cell immunoglobulin mucin-3 (Tim-3) are important negative immune regulatory molecules involved in viral persistence and tumor metastasis. Here we described the lower frequency of splenic T cells co-expressing CTLA-4 and Tim-3 accompanied by higher levels of proinflammatory but lower anti-inflammatory cytokines production in abortion-prone mouse model. Blockade of CTLA-4 and Tim-3 pathways leaded to the dysfunction of splenic T cells. By the higher expression during normal pregnancy, CTLA-4 and Tim-3 co-expression on splenic T cells linked to immunosuppressive phenotype. As the spleen is an important site for peripheral immune activation, our data suggest potential noninvasive biomarkers and therapeutic targets for miscarriage.


Assuntos
Aborto Animal/patologia , Antígeno CTLA-4/metabolismo , Baço/metabolismo , Aborto Animal/genética , Animais , Antígeno CTLA-4/genética , Feminino , Regulação da Expressão Gênica , Imunoglobulina G , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos CBA , Gravidez , Subpopulações de Linfócitos T
9.
Reproduction ; 162(2): 161-170, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34115609

RESUMO

Deficient decidualization of endometrial stromal cells (ESCs) can cause adverse pregnancy outcomes including miscarriage, intrauterine growth restriction, and pre-eclampsia. Decidualization is regulated by multiple factors such as hormones and circadian genes. Melatonin, a circadian-controlled hormone, is reported to be important for various reproductive processes, including oocyte maturation and placenta development. Its receptor, MT1, is considered to be related to intrauterine growth restriction and pre-eclampsia. However, the role of melatonin-MT1 signal in decidualization remains unknown. Here, we reported that decidual stromal cells from miscarriages displayed deficient decidualization with decreased MT1 expression. The expression level of MT1 is gradually increased with the process of decidualization induction in vitro. MT1 knockdown suppressed the decidualization level, while the overexpression of MT1 promoted the decidualization process. Moreover, changing MT1 level could regulate the expression of decidualization-related transcription factor FOXO1. Melatonin promoted decidualization and reversed the decidualization deficiency due to MT1 knockdown. Using in vitro and in vivo experiments, we further identified that lipopolysaccharide (LPS) could induce inflammation and decidualization resistance with downregulated MT1 expression, and melatonin could reverse the inflammation and decidualization resistance induced by LPS. These results suggested that the melatonin-MT1 signal might be essential for decidualization and might provide a novel therapeutic target for decidualization deficiency-associated pregnancy complications.


Assuntos
Aborto Espontâneo/patologia , Decídua/patologia , Endométrio/patologia , Regulação da Expressão Gênica , Melatonina/metabolismo , Receptor MT1 de Melatonina/metabolismo , Aborto Espontâneo/etiologia , Aborto Espontâneo/metabolismo , Adulto , Animais , Estudos de Casos e Controles , Células Cultivadas , Decídua/metabolismo , Endométrio/metabolismo , Feminino , Humanos , Camundongos , Gravidez , Adulto Jovem
10.
Reproduction ; 162(2): 107-115, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-33999841

RESUMO

The T-box transcription factor protein eomesodermin (Eomes) is known for both homeostasis and function of effector and memory CD8+T cells. However, much less is known about the functional regulation of Eomes on CD8+ T cells during pregnancy. In the present study, we concluded the higher Eomes expression dCD8+T cells during normal early pregnancy. The number of Eomes+dCD8+T cells decreased in miscarriage. This Eomes+dCD8+T cell subset also expressed less growth-promoting factors, shifted toward pro-inflammatory phenotype in miscarriage. Primary Trophoblasts and HTR8/SVneo cell line could increase Eomes expression of dCD8+T cells from both normal early pregnancy and miscarriage, which might provide a new strategy for therapy to promote maternal-fetal tolerance and prevent pregnancy loss. These findings indicated that Eomes might be promising early warming targets of miscarriage. In addition, this study suggested that the reproductive safety must be a criterion considered in modulating the dose and function of Eomes in CD8+T cells to reverse T cell exhaustion.


Assuntos
Aborto Espontâneo/patologia , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular , Tolerância Imunológica , Proteínas com Domínio T/metabolismo , Aborto Espontâneo/etiologia , Estudos de Casos e Controles , Feminino , Humanos , Gravidez , Proteínas com Domínio T/genética
11.
Reproduction ; 161(1): 1-10, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33112295

RESUMO

To obtain a successful pregnancy, trophoblasts must provide a physical barrier, suppress maternal reactivity, produce immunosuppressive hormones locally, and enhance the production of blocking factors that are able to bind to several antigenic sites. Inadequate placental perfusion has been closely associated with several pregnancy-associated diseases. Galectin-9 (Gal-9) has a wide variety of regulatory functions in innate and adaptive immunity during infection, tumor growth, and organ transplantation. We utilized immortalized human first-trimester extravillous trophoblast cells (HTR8/SVneo) for our functional study and examined the effects of Gal-9 on apoptosis, cytokine production and angiogenesis of HTR8/SVneo cells. Gal-9 inhibited the apoptosis and IFN-γ and IL-17A production, promoted IL-4 production, and coordinated the crosstalk between HTR8/SVneo cells and human umbilical vein endothelial cells via its interaction with Tim-3. Blockade of JNK signaling inhibited Gal-9 activities in HTR8/SVneo cells. In addition, we detected a correlation between low levels of Gal-9 and spontaneous abortion. So Gal-9 could inhibit the apoptosis and proinflammatory cytokine expression, and promote the angiogenesis and IL-4 production in HTR8/SVneo cells via Tim-3 in a JNK dependent manner to help the maintenance of normal pregnancy. These findings possibly identify Gal-9 as a key regulator of trophoblast cells and suggest its potential as a biomarker and target for the treatment of recurrent pregnancy loss.


Assuntos
Aborto Habitual/metabolismo , Galectinas/metabolismo , Sistema de Sinalização das MAP Quinases , Placentação , Trofoblastos/fisiologia , Feminino , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Gravidez
12.
Acta Biochim Biophys Sin (Shanghai) ; 53(10): 1333-1341, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34343226

RESUMO

Endometrial dysfunction is an important factor for implantation failure. The function of the endometrium is regulated by multiple factors like sex hormones and circadian rhythms. Endometrial stromal cells (ESCs) are a major cellular component in the endometrium, which is essential for proper physiological activities of the endometrium and the establishment of pregnancy. Melatonin, as a circadian-controlled hormone, plays beneficial roles in the regulation of reproductive processes. MT1, a melatonin receptor, can regulate cell proliferation and apoptosis. Whether melatonin-MT1 signal affects biological function of ESCs remains unknown. Here, we showed that MT1 was expressed in human ESCs (hESCs), which could be regulated by estrogen and progesterone. MT1 knockdown inhibited proliferative activity and promoted apoptosis of hESCs by activating caspase-3 and upregulating the Bax/Bcl2 ratio. Melatonin could reverse the effect of MT1 knockdown on proliferative activity and apoptosis of hESCs. Melatonin could promote proliferative activity of hESCs via the JNK/P38 signal pathway and repress the apoptosis of hESCs via the JNK signal pathway. Moreover, in vivo experiments showed that MT1 expression was decreased in endometrial cells from mice with disrupted circadian rhythm, accompanied by increased apoptosis and suppressed proliferative activity, which could be alleviated by administration of melatonin. These results showed the regulatory effect of melatonin-MT1 signal on biological behaviors of ESCs, which might provide a novel therapeutic strategy for endometrial dysfunction induced by disrupted circadian rhythm.


Assuntos
Endométrio/metabolismo , Melatonina/farmacologia , Receptor MT1 de Melatonina/metabolismo , Células Estromais/metabolismo , Adulto , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Ritmo Circadiano , Modelos Animais de Doenças , Endométrio/citologia , Endométrio/efeitos dos fármacos , Estrogênios/fisiologia , Feminino , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Progesterona/fisiologia , Receptor MT1 de Melatonina/agonistas , Receptor MT1 de Melatonina/genética , Células Estromais/efeitos dos fármacos , Regulação para Cima/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
13.
Reproduction ; 157(2): 189-198, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30605433

RESUMO

There is delicate crosstalk between fetus-derived trophoblasts (Tros) and maternal cells during normal pregnancy. Dysfunctions in interaction are highly linked to some pregnancy complications, such as recurrent spontaneous abortion (RSA), pre-eclampsia and fetal growth restriction. Hyaluronan (HA), the most abundant component of extracellular matrix, has been reported to act as both a pro- and an anti-inflammatory molecule. Previously, we reported that HA promotes the invasion and proliferation of Tros by activating PI3K/Akt and MAPK/ERK1/2 signaling pathways. While lower HA secretion by Tros was observed during miscarriages than that during normal pregnancies, in the present study, we further confirmed that higher secretion of HA by Tros could induce M2 polarization of macrophages at the maternal-fetal interface by interacting with CD44 and activating the downstream PI3K/Akt-STAT-3/STAT-6 signaling pathways. Furthermore, HA could restore the production of IL-10 and other normal pregnancy markers by decidual macrophages (dMφs) from RSA. These findings underline the important roles of HA in regulating the function of dMφs and maintaining a normal pregnancy.


Assuntos
Decídua/metabolismo , Ácido Hialurônico/metabolismo , Macrófagos/metabolismo , Trofoblastos/metabolismo , Aborto Habitual/metabolismo , Proliferação de Células/fisiologia , Decídua/citologia , Feminino , Humanos , Macrófagos/citologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais
14.
Acta Biochim Biophys Sin (Shanghai) ; 51(9): 908-914, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31411318

RESUMO

Perturbation of the circadian rhythm damages the biological characteristics of cells and leads to their dysfunction. Rev-erbα, an important gene in the transcription-translation loop of circadian rhythm, is involved in regulating the balance between pro-inflammation and anti-inflammation. The disruption of this balance in human endometrial stroma cells (hESCs) destroys their biological behavior function in maintaining the menstrual cycle and embryonic implantation. Whether pharmacological modulation of Rev-erbα affects the inflammation of hESCs remains unclear. In this study, we treated hESCs with lipopolysaccharide (LPS) and found that LPS treatment increased the mRNA levels of pro-inflammatory cytokines, such as interleukin (IL)-1ß, IL-6, IL-8, IL-18, and TNFα, and the secretion of IL-6. SR9009, a Rev-erbα agonist, significantly alleviated the LPS-induced production of pro-inflammatory cytokines in hESCs. Meanwhile, knockdown of Rev-erbα increased the expressions of IL-1ß, IL-6, and IL-8, accompanied by an increased mRNA level of the core clock gene Bmal1. Western blot analysis showed that SR9009 inhibited the expression of toll-like receptor 4 (TLR4) and the activation of NF-κB induced by LPS. All these findings suggested that pharmacological activation of Rev-erbα attenuated the LPS-induced inflammatory response of hESCs by suppressing TLR4-regulated NF-κB activation. This study may provide a strategy for preventing inflammation-related endometrial dysfunction and infertility or recurrent implantation failure.


Assuntos
Citocinas/imunologia , Endometrite/imunologia , Endométrio/imunologia , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/fisiologia , Células Estromais/imunologia , Endometrite/induzido quimicamente , Endométrio/citologia , Endométrio/patologia , Feminino , Humanos , Lipopolissacarídeos , NF-kappa B/metabolismo , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/agonistas , Células Estromais/citologia , Células Estromais/patologia , Receptor 4 Toll-Like/metabolismo
15.
J Reprod Dev ; 63(3): 289-294, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28331165

RESUMO

During pregnancy, CD8+ T cells are important regulators in the balance of fetal tolerance and antiviral immunity. T-cell immunoglobulin mucin-3 (Tim-3) and programmed cell death-1 (PD-1) are well-recognized negative co-stimulatory molecules involved in viral persistence and tumor metastasis. Here, we demonstrate that CD8+ T cells co-expressing Tim-3 and PD-1 were down-regulated in the deciduae of female mice in abortion-prone matings compared with normal pregnant mice. In addition to their reduced numbers, the Tim-3+PD-1+CD8+ T cells produced lower levels of the anti-inflammatory cytokines interleukin (IL)-4 and IL-10, as well as a higher level of the pro-inflammatory cytokine interferon (IFN)-γ, relative to those from normal pregnancy. Furthermore, normal pregnant CBA/J females challenged with Tim-3- and/or PD-1-blocking antibodies were more susceptible to fetal resorption. These findings indicate that Tim-3 and PD-1 pathways play critical roles in regulating CD8+ T cell function and maintaining normal pregnancy.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Perda do Embrião , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Prenhez/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Animais , Feminino , Tolerância Imunológica , Interferon gama/metabolismo , Masculino , Camundongos Endogâmicos CBA , Camundongos Endogâmicos DBA , Gravidez
16.
Hum Reprod ; 31(4): 700-11, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26908841

RESUMO

STUDY QUESTION: Are the immune regulatory molecules programmed cell death-1 (PD-1) and T-cell immunoglobulin mucin-3 (Tim-3) involved in regulating CD4+ T cell function during pregnancy? SUMMARY ANSWER: PD-1 and Tim-3 promote Type 2 helper T cell (Th2) bias and pregnancy maintenance by regulating CD4+ T cell function at the maternal-fetal interface. WHAT IS KNOWN ALREADY: The maternal CD4+ T cell response to fetal antigens is thought to be an important component of maternal-fetal tolerance during pregnancy. PD-1 and Tim-3 are important for limiting immunopathology. The co-expression of PD-1 and Tim-3 on T cells identifies a T cell subset with impaired proliferation and cytokine production. Combined blockade of Tim-3 and PD-1 could restore T cell function to the greatest degree. STUDY DESIGN, SIZE, DURATION: The expression of PD-1 and Tim-3 on CD4+ T cells was analyzed by flow cytometry, and in vitro and in vivo analyses were used to investigate the role of PD-1/Tim-3 signal in the regulation of CD4+ T cells function and pregnancy outcome. PARTICIPANTS/ MATERIALS, SETTING, METHODS: A total of 88 normal pregnant women, 37 women with recurrent spontaneous abortion, 36 normal pregnant mice and 45 abortion-prone mice were included. We measure the expression of PD-1 and Tim-3 on CD4+ T cells and their relationship to the function of CD4+ T cells and pregnancy outcome, as well as the effects of blocking PD-1 and Tim-3 pathways on decidual CD4+ T (dCD4+ T) cells during early pregnancy. MAIN RESULTS AND THE ROLE OF CHANCE: PD-1 and Tim-3, by virtue of their up-regulation on dCD4+ T cells during pregnancy, define a specific effector/memory subset of CD4+ T cells and promote Th2 bias at the maternal-fetal interface. Using in vitro and in vivo experiments, we also found that combined targeting of PD-1 and Tim-3 pathways results in decreased production of Th2-type cytokines by dCD4+ T cells and increased fetal resorption of normal pregnant murine models. Moreover, decreased PD-1 and Tim-3 on dCD4+ T cells may be associated with miscarriage. LIMITATIONS AND LIMITS OF CAUTION: Further study is required to examine the mechanism of PD-1 and Tim-3 effects on Th2 cytokine production by CD4+ T cells during pregnancy. WIDER IMPLICATIONS OF THE FINDINGS: These results have important implications for understanding the physiological mechanisms that promote maternal-fetal tolerance. Our study also indicates that targeting Tim-3 and PD-1 pathways may represent novel therapeutic strategies to prevent pregnancy loss. STUDY FUNDING/COMPETING INTERESTS: This study was supported by the National Basic Research Program of China (2015CB943300); National Nature Science Foundation of China (81490744, 91542116, 31570920, 81070537, 31171437, 81370770, 31270969, 31570920, 91542116); the Key Project of Shanghai Municipal Education Commission (14ZZ013) and the Key Project of Shanghai Basic Research from Shanghai Municipal Science and Technology Commission (12JC1401600). None of the authors have any conflict of interest to declare.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Decídua/imunologia , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Tolerância Imunológica , Troca Materno-Fetal , Receptor de Morte Celular Programada 1/metabolismo , Células Th2/imunologia , Aborto Habitual/sangue , Aborto Habitual/imunologia , Aborto Habitual/metabolismo , Aborto Habitual/patologia , Aborto Induzido , Animais , Anticorpos Neutralizantes/farmacologia , Anticorpos Neutralizantes/uso terapêutico , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/patologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Cruzamentos Genéticos , Decídua/efeitos dos fármacos , Decídua/metabolismo , Decídua/patologia , Feminino , Reabsorção do Feto/imunologia , Reabsorção do Feto/metabolismo , Reabsorção do Feto/patologia , Reabsorção do Feto/prevenção & controle , Receptor Celular 2 do Vírus da Hepatite A/antagonistas & inibidores , Receptor Celular 2 do Vírus da Hepatite A/sangue , Humanos , Tolerância Imunológica/efeitos dos fármacos , Troca Materno-Fetal/efeitos dos fármacos , Camundongos , Gravidez , Primeiro Trimestre da Gravidez , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/sangue , Células Th2/efeitos dos fármacos , Células Th2/metabolismo , Células Th2/patologia , Tocolíticos/farmacologia , Tocolíticos/uso terapêutico
17.
J Immunol ; 192(4): 1502-11, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24453244

RESUMO

Physiological pregnancy requires the maternal immune system to recognize and tolerate embryonic Ags. Although multiple mechanisms have been proposed, it is not yet clear how the fetus evades the maternal immune system. In this article, we demonstrate that trophoblast-derived thymic stromal lymphopoietin (TSLP) instructs decidual CD11c(+) dendritic cells (dDCs)with increased costimulatory molecules; MHC class II; and Th2/3-type, but not Th1-type, cytokines. TSLP-activated dDCs induce proliferation and differentiation of decidual CD4(+)CD25(-) T cells into CD4(+)CD25(+)FOXP3(+) regulatory T cells (Tregs) through TGF-ß1. TSLP-activated dDC-induced Tregs display immunosuppressive features and express Th2-type cytokines. In addition, decidual CD4(+)CD25(+)FOXP3(+) Tregs promote invasiveness and HLA-G expression of trophoblasts, resulting in preferential production of Th2 cytokines and reduced cytotoxicity in decidual CD56(bright)CD16(-) NK cells. Of interest, decreased TSLP expression and reduced numbers of Tregs were observed at the maternal-fetal interface during miscarriage. Our study identifies a novel feedback loop between embryo-derived trophoblasts and maternal decidual leukocytes, which induces a tolerogenic immune response to ensure a successful pregnancy.


Assuntos
Citocinas/metabolismo , Células Dendríticas/metabolismo , Histocompatibilidade Materno-Fetal/imunologia , Linfócitos T Reguladores/metabolismo , Aborto Espontâneo/metabolismo , Adulto , Antígeno CD11c/imunologia , Antígenos CD4/metabolismo , Antígeno CD56/metabolismo , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Citocinas/imunologia , Decídua/citologia , Decídua/metabolismo , Células Dendríticas/imunologia , Feminino , Fatores de Transcrição Forkhead/metabolismo , Antígenos de Histocompatibilidade Classe II , Humanos , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Células Matadoras Naturais/imunologia , Gravidez , Receptores de IgG/metabolismo , Células Th2/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Trofoblastos/imunologia , Trofoblastos/metabolismo , Adulto Jovem , Linfopoietina do Estroma do Timo
18.
Mol Hum Reprod ; 19(10): 676-86, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23737337

RESUMO

Spontaneous abortion is the most common complication of pregnancy. Immune activation and the subsequent inflammation-induced tissue injury are often observed at the maternal-fetal interface as the final pathological assault in recurrent spontaneous abortion. However, the precise mechanisms responsible for spontaneous abortion involving inflammation are not fully understood. Chemokine CCL28 and its receptors CCR3 and CCR10 are important regulators in inflammatory process. Here, we examined the expression of CCL28 and its receptors in decidual stromal cells (DSCs) by immunochemistry and flow cytometry (FCM), and compared their expression level in DSCs from normal pregnancy versus spontaneous abortion, and their relationship to inflammatory cytokines production by DSCs. We further analyzed regulation of the pro-inflammatory cytokines on CCL28 expression in DSCs by real-time polymerase chain reaction, In-cell Western and FCM. The effects of CCL28-CCR3/CCR10 interaction on DSC apoptosis was investigated by Annexin V staining and FCM analysis or DAPI staining and nuclear morphology. Higher levels of the inflammatory cytokines interleukin (IL)-1ß, IL-17A and tumor necrosis factor-α, and increased CCR3/CCR10 expression were observed in DSCs from spontaneous abortion compared with normal pregnancy. Treatment with inflammatory cytokines differently affected CCL28 and CCR3/CCR10 expression in DSCs. Human recombinant CCL28 promoted DSC apoptosis, which was eliminated by pretreatment with neutralizing antibodies against CCR3/CCR10 and CCL28. However, CCL28 did not affect DSC growth. These results suggest that the inflammation-promoted up-regulation of CCL28 and its receptors interaction in DSCs is involved in human spontaneous abortion via inducing DSC apoptosis.


Assuntos
Aborto Espontâneo/metabolismo , Quimiocinas CC/metabolismo , Decídua/citologia , Receptores CCR10/metabolismo , Receptores CCR3/metabolismo , Células Estromais/citologia , Células Estromais/metabolismo , Aborto Espontâneo/genética , Adulto , Apoptose/efeitos dos fármacos , Apoptose/genética , Células Cultivadas , Quimiocinas CC/genética , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Técnicas In Vitro , Interleucina-17/farmacologia , Interleucina-1beta/farmacologia , Gravidez , Receptores CCR10/genética , Receptores CCR3/genética , Células Estromais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Adulto Jovem
19.
Front Immunol ; 14: 1203719, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37404833

RESUMO

One pivotal aspect of early pregnancy is decidualization. The decidualization process includes two components: the differentiation of endometrial stromal cells to decidual stromal cells (DSCs), as well as the recruitment and education of decidual immune cells (DICs). At the maternal-fetal interface, stromal cells undergo morphological and phenotypic changes and interact with trophoblasts and DICs to provide an appropriate decidual bed and tolerogenic immune environment to maintain the survival of the semi-allogeneic fetus without causing immunological rejection. Despite classic endocrine mechanism by 17 ß-estradiol and progesterone, metabolic regulations do take part in this process according to recent studies. And based on our previous research in maternal-fetal crosstalk, in this review, we elaborate mechanisms of decidualization, with a special focus on DSC profiles from aspects of metabolism and maternal-fetal tolerance to provide some new insights into endometrial decidualization in early pregnancy.


Assuntos
Decídua , Endométrio , Gravidez , Feminino , Humanos , Decídua/metabolismo , Endométrio/metabolismo , Estradiol/metabolismo , Feto/metabolismo , Metabolismo Energético
20.
Reprod Sci ; 30(5): 1421-1434, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36197632

RESUMO

Circular RNAs (circRNAs), produced by precursor mRNAs, are a type of covalently closed circular molecule without 5' caps and 3' polyadenylated tails. Recently, advances in high-throughput sequencing, transcriptomics and bioinformatics, have revealed that circRNAs with specific traits in tissue or cells play emerging roles in both physiological and panthological contexts instead of as simple by-products of transcription. However, bringing circRNAs to the forefront of clinical practice is still a long way off. In this review, we highlight the progress in the formation and function of circRNAs, and how circRNAs work in female reproductive-related diseases, such as recurrent spontaneous abortion, preeclampsia, and endometriosis. We also discussed the clinical potential of circRNAs as biomarkers, and therapeutic agents in female reproductive diseases as well as research controversies, technical issues, and biological knowledge gaps that need to be addressed. This review may instruct future basic research and clinical applications on circRNAs, especially in female reproduction.


Assuntos
RNA Circular , RNA , Gravidez , Feminino , Humanos , RNA Mensageiro , Perfilação da Expressão Gênica , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA