Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(4): 914-930.e20, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38280375

RESUMO

The gut and liver are recognized to mutually communicate through the biliary tract, portal vein, and systemic circulation. However, it remains unclear how this gut-liver axis regulates intestinal physiology. Through hepatectomy and transcriptomic and proteomic profiling, we identified pigment epithelium-derived factor (PEDF), a liver-derived soluble Wnt inhibitor, which restrains intestinal stem cell (ISC) hyperproliferation to maintain gut homeostasis by suppressing the Wnt/ß-catenin signaling pathway. Furthermore, we found that microbial danger signals resulting from intestinal inflammation can be sensed by the liver, leading to the repression of PEDF production through peroxisome proliferator-activated receptor-α (PPARα). This repression liberates ISC proliferation to accelerate tissue repair in the gut. Additionally, treating mice with fenofibrate, a clinical PPARα agonist used for hypolipidemia, enhances colitis susceptibility due to PEDF activity. Therefore, we have identified a distinct role for PEDF in calibrating ISC expansion for intestinal homeostasis through reciprocal interactions between the gut and liver.


Assuntos
Intestinos , Fígado , Animais , Camundongos , Proliferação de Células , Fígado/metabolismo , PPAR alfa/metabolismo , Proteômica , Células-Tronco/metabolismo , Via de Sinalização Wnt , Intestinos/citologia , Intestinos/metabolismo
2.
Cell ; 174(6): 1436-1449.e20, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30146163

RESUMO

Synaptic vesicle and active zone proteins are required for synaptogenesis. The molecular mechanisms for coordinated synthesis of these proteins are not understood. Using forward genetic screens, we identified the conserved THO nuclear export complex (THOC) as an important regulator of presynapse development in C. elegans dopaminergic neurons. In THOC mutants, synaptic messenger RNAs are retained in the nucleus, resulting in dramatic decrease of synaptic protein expression, near complete loss of synapses, and compromised dopamine function. CRE binding protein (CREB) interacts with THOC to mark synaptic transcripts for efficient nuclear export. Deletion of Thoc5, a THOC subunit, in mouse dopaminergic neurons causes severe defects in synapse maintenance and subsequent neuronal death in the substantia nigra compacta. These cellular defects lead to abrogated dopamine release, ataxia, and animal death. Together, our results argue that nuclear export mechanisms can select specific mRNAs and be a rate-limiting step for neuronal differentiation and survival.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Neurônios Dopaminérgicos/metabolismo , Proteínas Nucleares/genética , Sinapses/metabolismo , Transporte Ativo do Núcleo Celular , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Sinalização do Cálcio , Núcleo Celular/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutagênese , Mutação de Sentido Incorreto , Proteínas Nucleares/deficiência , Proteínas Nucleares/metabolismo , Subunidades Proteicas/deficiência , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo
3.
Nature ; 629(8012): 586-591, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720080

RESUMO

Light-emitting diodes (LEDs) based on perovskite quantum dots (QDs) have produced external quantum efficiencies (EQEs) of more than 25% with narrowband emission1,2, but these LEDs have limited operating lifetimes. We posit that poor long-range ordering in perovskite QD films-variations in dot size, surface ligand density and dot-to-dot stacking-inhibits carrier injection, resulting in inferior operating stability because of the large bias required to produce emission in these LEDs. Here we report a chemical treatment to improve the long-range order of perovskite QD films: the diffraction intensity from the repeating QD units increases three-fold compared with that of controls. We achieve this using a synergistic dual-ligand approach: an iodide-rich agent (aniline hydroiodide) for anion exchange and a chemically reactive agent (bromotrimethylsilane) that produces a strong acid that in situ dissolves smaller QDs to regulate size and more effectively removes less conductive ligands to enable compact, uniform and defect-free films. These films exhibit high conductivity (4 × 10-4 S m-1), which is 2.5-fold higher than that of the control, and represents the highest conductivity recorded so far among perovskite QDs. The high conductivity ensures efficient charge transportation, enabling red perovskite QD-LEDs that generate a luminance of 1,000 cd m-2 at a record-low voltage of 2.8 V. The EQE at this luminance is more than 20%. Furthermore, the stability of the operating device is 100 times better than previous red perovskite LEDs at EQEs of more than 20%.

4.
PLoS Genet ; 20(5): e1011273, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38728357

RESUMO

Existing imaging genetics studies have been mostly limited in scope by using imaging-derived phenotypes defined by human experts. Here, leveraging new breakthroughs in self-supervised deep representation learning, we propose a new approach, image-based genome-wide association study (iGWAS), for identifying genetic factors associated with phenotypes discovered from medical images using contrastive learning. Using retinal fundus photos, our model extracts a 128-dimensional vector representing features of the retina as phenotypes. After training the model on 40,000 images from the EyePACS dataset, we generated phenotypes from 130,329 images of 65,629 British White participants in the UK Biobank. We conducted GWAS on these phenotypes and identified 14 loci with genome-wide significance (p<5×10-8 and intersection of hits from left and right eyes). We also did GWAS on the retina color, the average color of the center region of the retinal fundus photos. The GWAS of retina colors identified 34 loci, 7 are overlapping with GWAS of raw image phenotype. Our results establish the feasibility of this new framework of genomic study based on self-supervised phenotyping of medical images.


Assuntos
Fundo de Olho , Estudo de Associação Genômica Ampla , Fenótipo , Retina , Humanos , Estudo de Associação Genômica Ampla/métodos , Retina/diagnóstico por imagem , Masculino , Polimorfismo de Nucleotídeo Único , Feminino , Processamento de Imagem Assistida por Computador/métodos
5.
Nat Methods ; 20(7): 1104-1113, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37429962

RESUMO

Genetically encoded voltage indicators (GEVIs) enable optical recording of electrical signals in the brain, providing subthreshold sensitivity and temporal resolution not possible with calcium indicators. However, one- and two-photon voltage imaging over prolonged periods with the same GEVI has not yet been demonstrated. Here, we report engineering of ASAP family GEVIs to enhance photostability by inversion of the fluorescence-voltage relationship. Two of the resulting GEVIs, ASAP4b and ASAP4e, respond to 100-mV depolarizations with ≥180% fluorescence increases, compared with the 50% fluorescence decrease of the parental ASAP3. With standard microscopy equipment, ASAP4e enables single-trial detection of spikes in mice over the course of minutes. Unlike GEVIs previously used for one-photon voltage recordings, ASAP4b and ASAP4e also perform well under two-photon illumination. By imaging voltage and calcium simultaneously, we show that ASAP4b and ASAP4e can identify place cells and detect voltage spikes with better temporal resolution than commonly used calcium indicators. Thus, ASAP4b and ASAP4e extend the capabilities of voltage imaging to standard one- and two-photon microscopes while improving the duration of voltage recordings.


Assuntos
Encéfalo , Cálcio , Animais , Camundongos , Iluminação , Microscopia , Fótons
6.
Nature ; 582(7812): 432-437, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32499643

RESUMO

Highly structured RNA molecules usually interact with each other, and associate with various RNA-binding proteins, to regulate critical biological processes. However, RNA structures and interactions in intact cells remain largely unknown. Here, by coupling proximity ligation mediated by RNA-binding proteins with deep sequencing, we report an RNA in situ conformation sequencing (RIC-seq) technology for the global profiling of intra- and intermolecular RNA-RNA interactions. This technique not only recapitulates known RNA secondary structures and tertiary interactions, but also facilitates the generation of three-dimensional (3D) interaction maps of RNA in human cells. Using these maps, we identify noncoding RNA targets globally, and discern RNA topological domains and trans-interacting hubs. We reveal that the functional connectivity of enhancers and promoters can be assigned using their pairwise-interacting RNAs. Furthermore, we show that CCAT1-5L-a super-enhancer hub RNA-interacts with the RNA-binding protein hnRNPK, as well as RNA derived from the MYC promoter and enhancer, to boost MYC transcription by modulating chromatin looping. Our study demonstrates the power and applicability of RIC-seq in discovering the 3D structures, interactions and regulatory roles of RNA.


Assuntos
Conformação de Ácido Nucleico , RNA/química , RNA/genética , Análise de Sequência de RNA/métodos , Linhagem Celular , Cromatina/genética , Cromatina/metabolismo , Cromossomos Humanos/genética , Elementos Facilitadores Genéticos/genética , Genes myc/genética , Genes de RNAr/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Humanos , Regiões Promotoras Genéticas/genética , RNA Longo não Codificante/química , RNA Longo não Codificante/genética , Reprodutibilidade dos Testes , Transcrição Gênica
7.
Anal Chem ; 96(14): 5546-5553, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38551480

RESUMO

The detection of lysine acetyltransferases is crucial for diagnosing and treating lung cancer, highlighting the necessity for highly efficient detection methods. We developed a portable, highly accurate, and sensitive technique using fast-scan cyclic voltammetry (FSCV) to determine the activity of the lysine acetyltransferase TIP60, employing a novel miniature electrochemical sensor. This approach involves a compact electrochemical cell, merely 3 mm in diameter, that holds solutions up to 50 µL, equipped with a conductive indium tin oxide working electrode. Uniquely, this system operates on a two-electrode model compatible with the FSCV, obviating the traditional requirement for a reference electrode. The system detects TIP60 activity through the continuous generation of CoA molecules that engage in reactions with Cu(II), thereby significantly improving the accuracy of the acetylation analysis. Remarkably, the detection limit achieved for TIP60 is notably low at 3.3 pg/mL (S/N = 3). The results show that the reversible dynamic acetylation can be effectively regulated by inhibitor incubation and glucose stimulation. This cutting-edge strategy enhances the analysis of a broad spectrum of biomarkers by modifying the responsive unit, and its miniaturization and portability significantly amplify its applicability in biomedical research, promising it to be a versatile tool for early diagnostic and therapeutic interventions in lung cancer.


Assuntos
Neoplasias Pulmonares , Lisina Acetiltransferases , Humanos , Neoplasias Pulmonares/diagnóstico , Técnicas Eletroquímicas
8.
BMC Plant Biol ; 24(1): 380, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720246

RESUMO

BACKGROUND: Soybean (Glycine max), a vital grain and oilseed crop, serves as a primary source of plant protein and oil. Soil salinization poses a significant threat to soybean planting, highlighting the urgency to improve soybean resilience and adaptability to saline stress. Melatonin, recently identified as a key plant growth regulator, plays crucial roles in plant growth, development, and responses to environmental stress. However, the potential of melatonin to mitigate alkali stress in soybeans and the underlying mechanisms remain unclear. RESULTS: This study investigated the effects of exogenous melatonin on the soybean cultivar Zhonghuang 13 under alkaline stress. We employed physiological, biochemical, transcriptomic, and metabolomic analyses throughout both vegetative and pod-filling growth stages. Our findings demonstrate that melatonin significantly counteracts the detrimental effects of alkaline stress on soybean plants, promoting plant growth, photosynthesis, and antioxidant capacity. Transcriptomic analysis during both growth stages under alkaline stress, with and without melatonin treatment, identified 2,834 and 549 differentially expressed genes, respectively. These genes may play a vital role in regulating plant adaptation to abiotic stress. Notably, analysis of phytohormone biosynthesis pathways revealed altered expression of key genes, particularly in the ARF (auxin response factor), AUX/IAA (auxin/indole-3-acetic acid), and GH3 (Gretchen Hagen 3) families, during the early stress response. Metabolomic analysis during the pod-filling stage identified highly expressed metabolites responding to melatonin application, such as uteolin-7-O-(2''-O-rhamnosyl)rutinoside and Hederagenin-3-O-glucuronide-28-O-glucosyl(1,2)glucoside, which helped alleviate the damage caused by alkali stress. Furthermore, we identified 183 differentially expressed transcription factors, potentially playing a critical role in regulating plant adaptation to abiotic stress. Among these, the gene SoyZH13_04G073701 is particularly noteworthy as it regulates the key differentially expressed metabolite, the terpene metabolite Hederagenin-3-O-glucuronide-28-O-glucosyl(1,2)glucoside. WGCNA analysis identified this gene (SoyZH13_04G073701) as a hub gene, positively regulating the crucial differentially expressed metabolite of terpenoids, Hederagenin-3-O-glucuronide-28-O-glucosyl(1,2)glucoside. Our findings provide novel insights into how exogenous melatonin alleviates alkali stress in soybeans at different reproductive stages. CONCLUSIONS: Integrating transcriptomic and metabolomic approaches, our study elucidates the mechanisms by which exogenous melatonin ameliorates the inhibitory effects of alkaline stress on soybean growth and development. This occurs through modulation of biosynthesis pathways for key compounds, including terpenes, flavonoids, and phenolics. Our findings provide initial mechanistic insights into how melatonin mitigates alkaline stress in soybeans, offering a foundation for molecular breeding strategies to enhance salt-alkali tolerance in this crop.


Assuntos
Glycine max , Melatonina , Estresse Fisiológico , Transcriptoma , Melatonina/farmacologia , Glycine max/genética , Glycine max/efeitos dos fármacos , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Transcriptoma/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Metabolômica , Perfilação da Expressão Gênica , Álcalis , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Metaboloma/efeitos dos fármacos
9.
Small ; : e2401346, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700047

RESUMO

Transparent flexible energy storage devices are limited by the trade-off among flexibility, transparency, and charge storage capability of their electrode materials. Conductive polymers are intrinsically flexible, but limited by small capacitance. Pseudocapacitive MXene provides high capacitance, yet their opaque and brittle nature hinders their flexibility and transparency. Herein, the development of synergistically interacting conductive polymer Ti3C2Tx MXene/PEDOT:PSS composites is reported for transparent flexible all-solid-state supercapacitors, with an outstanding areal capacitance of 3.1 mF cm-2, a high optical transparency of 61.6%, and excellent flexibility and durability. The high capacitance and high transparency of the devices stem from the uniform and thorough blending of PEDOT:PSS and Ti3C2Tx, which is associated with the formation of O─H…O H-bonds in the composites. The conductive MXene/polymer composite electrodes demonstrate a rational means to achieve high-capacity, transparent and flexible supercapacitors in an easy and scalable manner.

10.
Mol Vis ; 30: 167-174, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601015

RESUMO

Purpose: To examine whether increased ephrin type-B receptor 1 (EphB1) leads to inflammatory mediators in retinal Müller cells. Methods: Diabetic human and mouse retinal samples were examined for EphB1 protein levels. Rat Müller cells (rMC-1) were grown in culture and treated with EphB1 siRNA or ephrin B1-Fc to explore inflammatory mediators in cells grown in high glucose. An EphB1 overexpression adeno-associated virus (AAV) was used to increase EphB1 in Müller cells in vivo. Ischemia/reperfusion (I/R) was performed on mice treated with the EphB1 overexpression AAV to explore the actions of EphB1 on retinal neuronal changes in vivo. Results: EphB1 protein levels were increased in diabetic human and mouse retinal samples. Knockdown of EphB1 reduced inflammatory mediator levels in Müller cells grown in high glucose. Ephrin B1-Fc increased inflammatory proteins in rMC-1 cells grown in normal and high glucose. Treatment of mice with I/R caused retinal thinning and loss of cell numbers in the ganglion cell layer. This was increased in mice exposed to I/R and treated with the EphB1 overexpressing AAVs. Conclusions: EphB1 is increased in the retinas of diabetic humans and mice and in high glucose-treated Müller cells. This increase leads to inflammatory proteins. EphB1 also enhanced retinal damage in response to I/R. Taken together, inhibition of EphB1 may offer a new therapeutic option for diabetic retinopathy.


Assuntos
Retinopatia Diabética , Efrina-B1 , Doenças Retinianas , Animais , Humanos , Camundongos , Ratos , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Células Ependimogliais/metabolismo , Efrina-B1/genética , Efrina-B1/metabolismo , Glucose/metabolismo , Mediadores da Inflamação/metabolismo , Retina/metabolismo , Doenças Retinianas/metabolismo
11.
BMC Endocr Disord ; 24(1): 108, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38982394

RESUMO

OBJECTIVE: We aimed to analyze the relationship between non-alcoholic fatty liver and progressive fibrosis and serum 25-hydroxy vitamin D (25(OH)D) in patients with type 2 diabetes mellitus. METHODS: A total of 184 patients with T2DM who were hospitalized in the Department of Endocrinology of the ShiDong Clinical Hospital between January 2023 and June 2023 were selected. We compared review of anthropometric, biochemical, and inflammatory parameters and non-invasive scores between groups defined by ultrasound NAFLD severity grades.We determine the correlation between 25(OH)D and FLI and FIB-4 scores, respectively. RESULTS: Statistically significant differences were seen between BMI, WC, C-peptide levels, FPG, ALT, serum 25(OH)D, TC, HDL, lumbar spine bone density, FLI, and FIB-4 in different degrees of NAFLD. Multivariate logistic regression analysis showed that 25(OH)D (OR = 1.26, p = 0.001), age (OR = 0.93, P < 0.001) and BMI (OR = 1.04, p = 0.007) were independent predictors of NAFLD in patients with T2DM. CONCLUSIONS: This study revealed the correlation between serum 25(OH)D levels and NAFLD in patients with T2DM. We also demonstrated that serum 25(OH)D levels were negatively correlated with FLI/FIB-4 levels in patients with T2DM with NAFLD, suggesting that vitamin D deficiency may promote hepatic fibrosis progression in T2DM with NAFLD.


Assuntos
Diabetes Mellitus Tipo 2 , Cirrose Hepática , Hepatopatia Gordurosa não Alcoólica , Vitamina D , Humanos , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/patologia , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Feminino , Masculino , Vitamina D/sangue , Vitamina D/análogos & derivados , Pessoa de Meia-Idade , Cirrose Hepática/sangue , Cirrose Hepática/patologia , Idoso , Progressão da Doença , Biomarcadores/sangue , Deficiência de Vitamina D/sangue , Deficiência de Vitamina D/complicações , Deficiência de Vitamina D/epidemiologia , Prognóstico , Adulto , Seguimentos
12.
Nature ; 556(7700): 244-248, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29618815

RESUMO

Hepatocytes are replenished gradually during homeostasis and robustly after liver injury1, 2. In adults, new hepatocytes originate from the existing hepatocyte pool3-8, but the cellular source of renewing hepatocytes remains unclear. Telomerase is expressed in many stem cell populations, and mutations in telomerase pathway genes have been linked to liver diseases9-11. Here we identify a subset of hepatocytes that expresses high levels of telomerase and show that this hepatocyte subset repopulates the liver during homeostasis and injury. Using lineage tracing from the telomerase reverse transcriptase (Tert) locus in mice, we demonstrate that rare hepatocytes with high telomerase expression (TERTHigh hepatocytes) are distributed throughout the liver lobule. During homeostasis, these cells regenerate hepatocytes in all lobular zones, and both self-renew and differentiate to yield expanding hepatocyte clones that eventually dominate the liver. In response to injury, the repopulating activity of TERTHigh hepatocytes is accelerated and their progeny cross zonal boundaries. RNA sequencing shows that metabolic genes are downregulated in TERTHigh hepatocytes, indicating that metabolic activity and repopulating activity may be segregated within the hepatocyte lineage. Genetic ablation of TERTHigh hepatocytes combined with chemical injury causes a marked increase in stellate cell activation and fibrosis. These results provide support for a 'distributed model' of hepatocyte renewal in which a subset of hepatocytes dispersed throughout the lobule clonally expands to maintain liver mass.


Assuntos
Hepatócitos/citologia , Hepatócitos/enzimologia , Homeostase , Regeneração Hepática , Fígado/citologia , Fígado/lesões , Telomerase/metabolismo , Animais , Linhagem da Célula/genética , Autorrenovação Celular/genética , Feminino , Hepatócitos/metabolismo , Homeostase/genética , Fígado/metabolismo , Fígado/patologia , Regeneração Hepática/genética , Masculino , Camundongos , Análise de Sequência de RNA , Telomerase/genética
13.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38612925

RESUMO

Ethylene (ET) is an important phytohormone that regulates plant growth, development and stress responses. The ethylene-insensitive3/ethylene-insensitive3-like (EIN3/EIL) transcription factor family, as a key regulator of the ET signal transduction pathway, plays an important role in regulating the expression of ET-responsive genes. Although studies of EIN3/EIL family members have been completed in many species, their role in doubled haploid (DH) poplar derived from another culture of diploid Populus simonii × P. nigra (donor tree, DT) remains ambiguous. In this study, a total of seven EIN3/EIL gene family members in the DH poplar genome were identified. Basic physical and chemical property analyses of these genes were performed, and these proteins were predicted to be localized to the nucleus. According to the phylogenetic relationship, EIN3/EIL genes were divided into two groups, and the genes in the same group had a similar gene structure and conserved motifs. The expression patterns of EIN3/EIL genes in the apical buds of different DH poplar plants were analyzed based on transcriptome data. At the same time, the expression patterns of PsnEIL1, PsnEIN3, PsnEIL4 and PsnEIL5 genes in different tissues of different DH plants were detected via RT-qPCR, including the apical buds, young leaves, functional leaves, xylem, cambium and roots. The findings presented above indicate notable variations in the expression levels of PsnEIL genes across various tissues of distinct DH plants. Finally, the PsnEIL1 gene was overexpressed in DT, and the transgenic plants showed a dwarf phenotype, indicating that the PsnEIL1 gene was involved in regulating the growth and development of poplar. In this study, the EIN3/EIL gene family of DH poplar was analyzed and functionally characterized, which provides a theoretical basis for the future exploration of the EIN3/EIL gene function.


Assuntos
Populus , Haploidia , Filogenia , Populus/genética , Etilenos
14.
J Biol Chem ; 298(4): 101674, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35148987

RESUMO

Adeno-associated viruses (AAVs) targeting specific cell types are powerful tools for studying distinct cell types in the central nervous system (CNS). Cis-regulatory modules (CRMs), e.g., enhancers, are highly cell-type-specific and can be integrated into AAVs to render cell type specificity. Chromatin accessibility has been commonly used to nominate CRMs, which have then been incorporated into AAVs and tested for cell type specificity in the CNS. However, chromatin accessibility data alone cannot accurately annotate active CRMs, as many chromatin-accessible CRMs are not active and fail to drive gene expression in vivo. Using available large-scale datasets on chromatin accessibility, such as those published by the ENCODE project, here we explored strategies to increase efficiency in identifying active CRMs for AAV-based cell-type-specific labeling and manipulation. We found that prescreening of chromatin-accessible putative CRMs based on the density of cell-type-specific transcription factor binding sites (TFBSs) can significantly increase efficiency in identifying active CRMs. In addition, generation of synthetic CRMs by stitching chromatin-accessible regions flanking cell-type-specific genes can render cell type specificity in many cases. Using these straightforward strategies, we generated AAVs that can target the extensively studied interneuron and glial cell types in the retina and brain. Both strategies utilize available genomic datasets and can be employed to generate AAVs targeting specific cell types in CNS without conducting comprehensive screening and sequencing experiments, making a step forward in cell-type-specific research.


Assuntos
Encéfalo , Dependovirus , Retina , Coloração e Rotulagem , Fatores de Transcrição , Animais , Sítios de Ligação , Encéfalo/citologia , Encéfalo/metabolismo , Cromatina/genética , Cromatina/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Camundongos , Retina/citologia , Retina/metabolismo , Coloração e Rotulagem/métodos , Fatores de Transcrição/metabolismo
15.
Development ; 147(14)2020 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-32631829

RESUMO

Transcription factors (TFs) are often used repeatedly during development and homeostasis to control distinct processes in the same and/or different cellular contexts. Considering the limited number of TFs in the genome and the tremendous number of events that need to be regulated, re-use of TFs is necessary. We analyzed how the expression of the homeobox TF, orthodenticle homeobox 2 (Otx2), is regulated in a cell type- and stage-specific manner during development in the mouse retina. We identified seven Otx2 cis-regulatory modules (CRMs), among which the O5, O7 and O9 CRMs mark three distinct cellular contexts of Otx2 expression. We discovered that Otx2, Crx and Sox2, which are well-known TFs regulating retinal development, bind to and activate the O5, O7 or O9 CRMs, respectively. The chromatin status of these three CRMs was found to be distinct in vivo in different retinal cell types and at different stages. We conclude that retinal cells use a cohort of TFs with different expression patterns and multiple CRMs with different chromatin configurations to regulate the expression of Otx2 precisely.


Assuntos
Fatores de Transcrição Otx/metabolismo , Elementos Reguladores de Transcrição/genética , Retina/metabolismo , Fatores de Transcrição/metabolismo , Animais , Cromatina/metabolismo , Fase G2 , Células HEK293 , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Mutagênese , Fatores de Transcrição Otx/antagonistas & inibidores , Fatores de Transcrição Otx/genética , Células Fotorreceptoras de Vertebrados/citologia , Células Fotorreceptoras de Vertebrados/metabolismo , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Retina/crescimento & desenvolvimento , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética
16.
Development ; 147(3)2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31915147

RESUMO

Identification of cell type-specific cis-regulatory elements (CREs) is crucial for understanding development and disease, although identification of functional regulatory elements remains challenging. We hypothesized that context-specific CREs could be identified by context-specific non-coding RNA (ncRNA) profiling, based on the observation that active CREs produce ncRNAs. We applied ncRNA profiling to identify rod and cone photoreceptor CREs from wild-type and mutant mouse retinas, defined by presence or absence, respectively, of the rod-specific transcription factor (TF) NrlNrl-dependent ncRNA expression strongly correlated with epigenetic profiles of rod and cone photoreceptors, identified thousands of candidate rod- and cone-specific CREs, and identified motifs for rod- and cone-specific TFs. Colocalization of NRL and the retinal TF CRX correlated with rod-specific ncRNA expression, whereas CRX alone favored cone-specific ncRNA expression, providing quantitative evidence that heterotypic TF interactions distinguish cell type-specific CRE activity. We validated the activity of novel Nrl-dependent ncRNA-defined CREs in developing cones. This work supports differential ncRNA profiling as a platform for the identification of cell type-specific CREs and the discovery of molecular mechanisms underlying TF-dependent CRE activity.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas do Olho/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Transcrição Gênica/genética , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteínas do Olho/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Masculino , Camundongos , Camundongos Knockout , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Transativadores/genética , Transativadores/metabolismo , Transcriptoma
17.
Arch Insect Biochem Physiol ; 112(1): e21973, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36193599

RESUMO

Methoprene-tolerant (Met) as an intracellular receptor of juvenile hormone (JH) and the Krüppel-homolog 1 (Kr-h1) as a JH-inducible transcription factor had been proved to contribute to insect reproduction. Their functions vary in different insect orders, however, they are not clear in Psocoptera. In this study, LeMet and LeKr-h1 were identified and their roles in vitellogenesis and ovarian development were investigated in Liposcelis entomophila (Enderlein). Treatment with exogenous JH III significantly induced the expression of LeKr-h1, LeVg, and LeVgR. Furthermore, silencing LeMet and LeKr-h1 remarkably reduced the transcription of LeVg and LeVgR, disrupted the production of Vg in fat body and the uptake of Vg by oocytes, and ultimately led to a decline in fecundity. The results indicated that the JH signaling pathway was essential to the reproductive process of this species. Interestingly, knockdown of LeMet or LeKr-h1 also resulted in fluctuations in the expression of FoxO, indicating the complex regulatory interactions between different hormone factors. Besides, knockdown of both LeMet and LeKr-h1 significantly increased L. entomophila mortality. Our study provides initial insight into the roles of JH signaling in the female reproduction of psocids and provided evidence that RNAi-mediated knockdown of Met or Kr-h1 is a potential pest control strategy.


Assuntos
Hormônios Juvenis , Metoprene , Feminino , Animais , Hormônios Juvenis/metabolismo , Metoprene/farmacologia , Vitelogênese , Fatores de Transcrição/metabolismo , Interferência de RNA , Neópteros/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
18.
J Cell Mol Med ; 26(21): 5335-5359, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36251271

RESUMO

Cardiovascular disease (CVD) is highly prevalent in an ageing society. The increased incidence and mortality rates of CVD are global issues endangering human health. There is an urgent requirement for understanding the aetiology and pathogenesis of CVD and developing possible interventions for preventing CVD in ageing hearts. It is necessary to select appropriate models and treatment methods. The D-galactose-induced cardiac ageing model possesses the advantages of low mortality, short time and low cost and has been increasingly used in the study of cardiovascular diseases in recent years. Therefore, understanding the latest progress in D-galactose-induced cardiac ageing is valuable. This review highlights the recent progress and potential therapeutic interventions used in D-galactose-induced cardiac ageing in recent years by providing a comprehensive summary of D-galactose-induced cardiac ageing in vivo and in vitro. This review may serve as reference literature for future research on age-related heart diseases.


Assuntos
Doenças Cardiovasculares , Galactose , Humanos , Estresse Oxidativo , Envelhecimento/patologia , Coração
19.
Anal Chem ; 94(44): 15324-15331, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36300350

RESUMO

We developed an axis-mode donor-DNA-acceptor electrochemical system to distinguish whether electron transfer in DNA occurs by tunneling or hopping. In the axis-mode, rigid stem-loop DNA was designed with the redox probe Ag+ embedded at the axis of the strand through a C-Ag+-C mismatch, which was immobilized onto the electrode surface in a saturated manner. Thus, the rotation, swing, and bending of the DNA strand were restricted and then the number of Ag+, the distance L between Ag+ and the electrode, and the chemical environment could be precisely controlled. In addition, fast scan cyclic voltammetry was applied to realize the in situ redox reaction of Ag+, without diffusion away from the electrode and the ensuing deconstruction of the stem-loop DNA. In this case, as a direct indicator of rate, the peak Faradaic current ip was extracted and used to fit the tunneling mechanism i ∝ exp (-ßL) and the hopping mechanism i ∝ L-η. The value of ß was determined to be 0.100 Å-1, which is consistent with the range of 0.1∼1.5 Å-1 reported previously, while η was determined to be 0.677, which is completely beyond the correct range of 1 ≤ η ≤ 2, demonstrating that electron transfer in DNA occurs by tunneling instead of hopping or that tunneling dominates. Additionally, current additivity and the irrelevance of the base sequence illustrate this point again. Thus, the possibility of independent parallel tunneling currents in DNA strands is revealed, which is helpful for recognizing the feasibility of DNA-based wires and devices.


Assuntos
DNA , Elétrons , Transporte de Elétrons , Oxirredução , Eletrodos
20.
Chembiochem ; 23(20): e202200413, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-35997506

RESUMO

We report an electrochemical biosensor based on the supramolecular host-guest recognition between cucurbit[7]uril (CB[7]) and L-phenylalanine-Cu(II) complex for pyrophosphate (PPi) and alkaline phosphatase (ALP) analysis. First, L-Phe-Cu(II) complex is simply synthesized by the complexation of Cu(II) (metal node) with L-Phe (bioorganic ligand), which can be immobilized onto CB[7] modified electrode via host-guest interaction of CB[7] and L-Phe. In this process, the signal of the complex-triggered electro-catalytic reduction of H2 O2 can be captured. Next, due to the strong chelation between PPi and Cu(II), a biosensing system of the model "PPi and Cu(II) premixing, then adding L-Phe" was designed and the platform was applied to PPi analysis by hampering the formation of L-Phe-Cu(II) complex. Along with ALP introduction, PPi can be hydrolyzed to orthophosphate (Pi), where abundant Cu(II) ions are released to form L-Phe-Cu(II) complex, which gives rise to the catalytic reaction of complex to H2 O2 reduction. The quantitative analysis of H2 O2 , PPi and ALP activity was achieved successfully and the detection of limits are 0.067 µM, 0.42 µM and 0.09 mU/mL (S/N=3), respectively. With its high sensitivity and selectivity, cost-effectiveness, and simplicity, our analytical system has great potential to for use in diagnosis and treatment of ALP-related diseases.


Assuntos
Fosfatase Alcalina , Difosfatos , Difosfatos/química , Ligantes , Cobre/química , Fenilalanina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA