Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 8(3)2022 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-35330268

RESUMO

The high-osmolarity glycerol response kinase, Hog1, affects several cellular responses, but the precise regulatory role of the Hog1 mitogen-activated protein (MAP) kinase in the differentiation of the infective structure of Alternariaalternata induced by pear cuticular wax and hydrophobicity has not yet clarified. In this study, the AaHog1 in A. alternata was identified and functionally characterized. AaHog1 has threonine-glycine-tyrosine (TGY) phosphorylation sites. Moreover, the expression level of AaHog1 was significantly upregulated during the stages of appressorium formation of A. alternata on the fruit-wax-extract-coated GelBond hydrophobic film surface. Importantly, our results showed that the appressorium and infection hyphae formation rates were significantly reduced in ΔAaHog1 mutants. Furthermore, AaHog1 is beneficial for the growth and development, stress tolerance, virulence, and cell-wall-degrading enzyme activity of A. alternata. These findings may be useful for dissecting the AaHog1 regulatory mechanism in relation to the pathogenesis of A. alternata.

2.
Front Plant Sci ; 12: 642601, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968101

RESUMO

Alternaria alternata, the casual agent of black rot of pear fruit, can sense and respond to the physicochemical cues from the host surface and form infection structures during infection. To evaluate the role of cyclic AMP-dependent protein kinase (cAMP-PKA) signaling in surface sensing of A. alternata, we isolated and functionally characterized the cyclic adenosine monophosphate-dependent protein kinase A catalytic subunit gene (AaPKAc). Gene expression results showed that AaPKAc was strongly expressed during the early stages of appressorium formation on hydrophobic surfaces. Knockout mutants ΔAaPKAc were generated by replacing the target genes via homologous recombination events. We found that intracellular cAMP content increased but PKA content decreased in ΔAaPKAc mutant strain. Appressorium formation and infection hyphae were reduced in the ΔAaPKAc mutant strain, and the ability of the ΔAaPKAc mutant strain to recognize and respond to high hydrophobicity surfaces and different surface waxes was lower than in the wild type (WT) strain. In comparison with the WT strain, the appressorium formation rate of the ΔAaPKAc mutant strain on high hydrophobicity and fruit wax extract surface was reduced by 31.6 and 49.3% 4 h after incubation, respectively. In addition, AaPKAc is required for the hypha growth, biomass, pathogenicity, and toxin production of A. alternata. However, AaPKAc negatively regulated conidia formation, melanin production, and osmotic stress resistance. Collectively, AaPKAc is required for pre-penetration, developmental, physiological, and pathological processes in A. alternata.

3.
Toxins (Basel) ; 12(2)2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-32075318

RESUMO

Black spot caused by Alternaria alternata is one of the important diseases of pear fruit during storage. Isothiocyanates are known as being strong antifungal compounds in vitro against different fungi. The aim of this study was to assess the antifungal effects of the volatile compound 2-phenylethyl isothiocyanate (2-PEITC) against A. alternata in vitro and in pear fruit, and to explore the underlying inhibitory mechanisms. The in vitro results showed that 2-PEITC significantly inhibited spore germination and mycelial growth of A. alternata-the inhibitory effects showed a dose-dependent pattern and the minimum inhibitory concentration (MIC) was 1.22 mM. The development of black spot rot on the pear fruit inoculated with A. alternata was also significantly decreased by 2-PEITC fumigation. At 1.22 mM concentration, the lesion diameter was only 39% of that in the control fruit at 7 days after inoculation. Further results of the leakage of electrolyte, increase of intracellular OD260, and propidium iodide (PI) staining proved that 2-PEITC broke cell membrane permeability of A. alternata. Moreover, 2-PEITC treatment significantly decreased alternariol (AOH), alternariolmonomethyl ether (AME), altenuene (ALT), and tentoxin (TEN) contents of A. alternata. Taken together, these data suggest that the mechanisms underlying the antifungal effect of 2-PEITC against A. alternata might be via reduction in toxin content and breakdown of cell membrane integrity.


Assuntos
Alternaria/efeitos dos fármacos , Antifúngicos/farmacologia , Contaminação de Alimentos/prevenção & controle , Isotiocianatos/farmacologia , Micotoxinas/biossíntese , Pyrus/microbiologia , Alternaria/metabolismo , Alternaria/fisiologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Frutas/microbiologia , Germinação/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Esporos/efeitos dos fármacos , Esporos/crescimento & desenvolvimento , Compostos Orgânicos Voláteis/farmacologia
4.
RSC Adv ; 10(3): 1829-1837, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35494694

RESUMO

The antifungal activity of benzyl isothiocyanate (BITC) against pear pathotype-Alternaria alternata, the causal agent of pear black spot, and its possible mechanisms were studied. The results indicated that both the spore germination and mycelial growth of A. alternata were significantly inhibited by BITC in a dose-dependent manner. BITC concentrations at 1.25 mM completely suppressed mycelial growth of A. alternata and prevented ≥50% of black spot development in wounded pears inoculated with A. alternata. Microscopic analyses and propidium iodide (PI) staining showed that spore morphology in A. alternata treated with BITC at 0.625 mM was severely damaged. Relative electrical conductivity and lysis ability assays further showed that BITC treatment destroyed the integrity of the plasma membrane. Additionally, mycotoxin production was inhibited by 0.312 mM BITC, and the inhibitory rates of alternariol monomethyl ether (AME), alternariol (AOH), altenuene (ALT) and tentoxin (TEN) were 89.36%, 84.57%, 91.41% and 67.78%, respectively. The above results suggest that BITC exerts antifungal activity through membrane-targeted mechanisms.

5.
Front Microbiol ; 11: 1279, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32695073

RESUMO

To investigate the mechanisms of phospholipase C (PLC)-mediated calcium (Ca2+) signaling in Alternaria alternata, the regulatory roles of PLC were elucidated using neomycin, a specific inhibitor of PLC activity. Three isotypes of PLC designated AaPLC1, AaPLC2, and AaPLC3 were identified in A. alternata through genome sequencing. qRT-PCR analysis showed that fruit wax extracts significantly upregulated the expression of all three PLC genes in vitro. Pharmacological experiments showed that neomycin treatment led to a dose-dependent reduction in spore germination and appressorium formation in A. alternata. Appressorium formation was stimulated on hydrophobic and pear wax-coated surfaces but was significantly inhibited by neomycin treatment. The appressorium formation rates of neomycin treated A. alternata on hydrophobic and wax-coated surfaces decreased by 86.6 and 47.4%, respectively. After 4 h of treatment, exogenous CaCl2 could partially reverse the effects of neomycin treatment. Neomycin also affected mycotoxin production in alternariol (AOH), alternariol monomethyl ether (AME), altenuene (ALT), and tentoxin (TEN), with exogenous Ca2+ partially reversing these effects. These results suggest that PLC is required for the growth, infection structure differentiation, and secondary metabolism of A. alternata in response to physiochemical signals on the pear fruit surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA