Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 984
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 601(7892): 257-262, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34937940

RESUMO

The methanogenic degradation of oil hydrocarbons can proceed through syntrophic partnerships of hydrocarbon-degrading bacteria and methanogenic archaea1-3. However, recent culture-independent studies have suggested that the archaeon 'Candidatus Methanoliparum' alone can combine the degradation of long-chain alkanes with methanogenesis4,5. Here we cultured Ca. Methanoliparum from a subsurface oil reservoir. Molecular analyses revealed that Ca. Methanoliparum contains and overexpresses genes encoding alkyl-coenzyme M reductases and methyl-coenzyme M reductases, the marker genes for archaeal multicarbon alkane and methane metabolism. Incubation experiments with different substrates and mass spectrometric detection of coenzyme-M-bound intermediates confirm that Ca. Methanoliparum thrives not only on a variety of long-chain alkanes, but also on n-alkylcyclohexanes and n-alkylbenzenes with long n-alkyl (C≥13) moieties. By contrast, short-chain alkanes (such as ethane to octane) or aromatics with short alkyl chains (C≤12) were not consumed. The wide distribution of Ca. Methanoliparum4-6 in oil-rich environments indicates that this alkylotrophic methanogen may have a crucial role in the transformation of hydrocarbons into methane.


Assuntos
Euryarchaeota , Hidrocarbonetos , Metano , Alcanos/metabolismo , Biodegradação Ambiental , Euryarchaeota/enzimologia , Euryarchaeota/genética , Hidrocarbonetos/metabolismo , Metano/metabolismo , Oxirredutases/metabolismo , Filogenia
2.
Nucleic Acids Res ; 52(2): 885-905, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38000373

RESUMO

RNA-binding proteins (RBPs) with intrinsically disordered regions (IDRs) are linked to multiple human disorders, but their mechanisms of action remain unclear. Here, we report that one such protein, Nocte, is essential for Drosophila eye development by regulating a critical gene expression cascade at translational level. Knockout of nocte in flies leads to lethality, and its eye-specific depletion impairs eye size and morphology. Nocte preferentially enhances translation of mRNAs with long upstream open reading frames (uORFs). One of the key Nocte targets, glass mRNA, encodes a transcription factor critical for differentiation of photoreceptor neurons and accessory cells, and re-expression of Glass largely rescued the eye defects caused by Nocte depletion. Mechanistically, Nocte counteracts long uORF-mediated translational suppression by promoting translation reinitiation downstream of the uORF. Nocte interacts with translation factors eIF3 and Rack1 through its BAT2 domain, and a Nocte mutant lacking this domain fails to promote translation of glass mRNA. Notably, de novo mutations of human orthologs of Nocte have been detected in schizophrenia patients. Our data suggest that Nocte family of proteins can promote translation reinitiation to overcome long uORFs-mediated translational suppression, and disruption of this function can lead to developmental defects and neurological disorders.


Assuntos
Drosophila , Proteínas de Ligação a RNA , Animais , Humanos , Regiões 5' não Traduzidas , Drosophila/genética , Drosophila/metabolismo , Fases de Leitura Aberta/genética , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo
3.
Plant J ; 117(5): 1558-1573, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38113320

RESUMO

Stalk lodging is a severe problem that limits maize production worldwide, although little attention has been given to its genetic basis. Here we measured rind penetrometer resistance (RPR), an effective index for stalk lodging, in a multi-parent population of 1948 recombinant inbred lines (RILs) and an association population of 508 inbred lines (AMP508). Linkage and association mapping identified 53 and 29 single quantitative trait loci (QTLs) and 50 and 19 pairs of epistatic interactions for RPR in the multi-parent population and AMP508 population, respectively. Phenotypic variation explained by all identified epistatic QTLs (up to ~5%) was much less than that explained by all single additive QTLs (up to ~33% in the multi-parent population and ~ 60% in the AMP508 population). Among all detected QTLs, only eight single QTLs explained >10% of phenotypic variation in single RIL populations. Alleles that increased RPR were enriched in tropical/subtropical (TST) groups from the AMP508 population. Based on genome-wide association studies in both populations, we identified 137 candidate genes affecting RPR, which were assigned to multiple biological processes, such as the biosynthesis of cell wall components. Sixty-six candidate genes were cross-validated by multiple methods or populations. Most importantly, 23 candidate genes were upregulated or downregulated in high-RPR lines relative to low-RPR lines, supporting the associations between candidate genes and RPR. These findings reveal the complex nature of the genetic basis underlying RPR and provide loci or candidate genes for developing elite varieties that are resistant to stalk lodging via molecular breeding.


Assuntos
Estudo de Associação Genômica Ampla , Zea mays , Mapeamento Cromossômico , Zea mays/genética , Fenótipo , Ligação Genética
4.
Nucleic Acids Res ; 51(5): 2415-2433, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36794732

RESUMO

Topoisomerases are required to release topological stress generated by RNA polymerase II (RNAPII) during transcription. Here, we show that in response to starvation, the complex of topoisomerase 3b (TOP3B) and TDRD3 can enhance not only transcriptional activation, but also repression, which mimics other topoisomerases that can also alter transcription in both directions. The genes enhanced by TOP3B-TDRD3 are enriched with long and highly-expressed ones, which are also preferentially stimulated by other topoisomerases, suggesting that different topoisomerases may recognize their targets through a similar mechanism. Specifically, human HCT116 cells individually inactivated for TOP3B, TDRD3 or TOP3B topoisomerase activity, exhibit similarly disrupted transcription for both starvation-activated genes (SAGs) and starvation-repressed genes (SRGs). Responding to starvation, both TOP3B-TDRD3 and the elongating form of RNAPII exhibit concomitantly increased binding to TOP3B-dependent SAGs, at binding sites that overlap. Notably, TOP3B inactivation decreases the binding of elongating RNAPII to TOP3B-dependent SAGs while increased it to SRGs. Furthermore, TOP3B-ablated cells display reduced transcription of several autophagy-associated genes and autophagy per se. Our data suggest that TOP3B-TDRD3 can promote both transcriptional activation and repression by regulating RNAPII distribution. In addition, the findings that it can facilitate autophagy may account for the shortened lifespan of Top3b-KO mice.


Assuntos
DNA Topoisomerases , Ativação Transcricional , Animais , Humanos , Camundongos , Proteínas/metabolismo , RNA Polimerase II/metabolismo , Linhagem Celular , Fenômenos Fisiológicos Celulares , DNA Topoisomerases/metabolismo , Autofagia
5.
Chem Soc Rev ; 53(9): 4463-4489, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38498347

RESUMO

With the explosion of digital world, the dramatically increasing data volume is expected to reach 175 ZB (1 ZB = 1012 GB) in 2025. Storing such huge global data would consume tons of resources. Fortunately, it has been found that the deoxyribonucleic acid (DNA) molecule is the most compact and durable information storage medium in the world so far. Its high coding density and long-term preservation properties make itself one of the best data storage carriers for the future. High-throughput DNA synthesis is a key technology for "DNA data storage", which encodes binary data stream (0/1) into quaternary long DNA sequences consisting of four bases (A/G/C/T). In this review, the workflow of DNA data storage and the basic methods of artificial DNA synthesis technology are outlined first. Then, the technical characteristics of different synthesis methods and the state-of-the-art of representative commercial companies, with a primary focus on silicon chip microarray-based synthesis and novel enzymatic DNA synthesis are presented. Finally, the recent status of DNA storage and new opportunities for future development in the field of high-throughput, large-scale DNA synthesis technology are summarized.


Assuntos
DNA , DNA/química , Armazenamento e Recuperação da Informação , Análise de Sequência com Séries de Oligonucleotídeos
6.
J Cell Mol Med ; 28(9): e18319, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38742846

RESUMO

Knee osteoarthritis (KOA), a major health and economic problem facing older adults worldwide, is a degenerative joint disease. Glycyrrhiza uralensis Fisch. (GC) plays an integral role in many classic Chinese medicine prescriptions for treating knee osteoarthritis. Still, the role of GC in treating KOA is unclear. To explore the pharmacological mechanism of GC against KOA, UPLC-Q-TOF/MS was conducted to detect the main compounds in GC. The therapeutic effect of GC on DMM-induced osteoarthritic mice was assessed by histomorphology, µCT, behavioural tests, and immunohistochemical staining. Network pharmacology and molecular docking were used to predict the potential targets of GC against KOA. The predicted results were verified by immunohistochemical staining Animal experiments showed that GC had a protective effect on DMM-induced KOA, mainly in the improvement of movement disorders, subchondral bone sclerosis and cartilage damage. A variety of flavonoids and triterpenoids were detected in GC via UPLC-Q-TOF/MS, such as Naringenin. Seven core targets (JUN, MAPK3, MAPK1, AKT1, TP53, RELA and STAT3) and three main pathways (IL-17, NF-κB and TNF signalling pathways) were discovered through network pharmacology analysis that closely related to inflammatory response. Interestingly, molecular docking results showed that the active ingredient Naringenin had a good binding effect on anti-inflammatory-related proteins. In the verification experiment, after the intervention of GC, the expression levels of pp65 and F4/80 inflammatory indicators in the knee joint of KOA model mice were significantly downregulated. GC could improve the inflammatory environment in DMM-induced osteoarthritic mice thus alleviating the physiological structure and dysfunction of the knee joint. GC might play an important role in the treatment of knee osteoarthritis.


Assuntos
Glycyrrhiza uralensis , Simulação de Acoplamento Molecular , Farmacologia em Rede , Osteoartrite do Joelho , Animais , Glycyrrhiza uralensis/química , Camundongos , Osteoartrite do Joelho/tratamento farmacológico , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/patologia , Masculino , Modelos Animais de Doenças , Transdução de Sinais/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Camundongos Endogâmicos C57BL
7.
Dev Biol ; 495: 92-103, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36657508

RESUMO

The availability of glucose transporter in the small intestine critically determines the capacity for glucose uptake and consequently systemic glucose homeostasis. Hence a better understanding of the physiological regulation of intestinal glucose transporter is pertinent. However, the molecular mechanisms that regulate sodium-glucose linked transporter 1 (SGLT1), the primary glucose transporter in the small intestine, remain incompletely understood. Recently, the Drosophila SLC5A5 (dSLC5A5) has been found to exhibit properties consistent with a dietary glucose transporter in the Drosophila midgut, the equivalence of the mammalian small intestine. Hence, the fly midgut could serve as a suitable model system for the study of the in vivo molecular underpinnings of SGLT1 function. Here, we report the identification, through a genetic screen, of Drosophila transmembrane protein 214 (dTMEM214) that acts in the midgut enterocytes to regulate systemic glucose homeostasis and glucose uptake. We show that dTMEM214 resides in the apical membrane and cytoplasm of the midgut enterocytes, and that the proper subcellular distribution of dTMEM214 in the enterocytes is regulated by the Rab4 GTPase. As a corollary, Rab4 loss-of-function phenocopies dTMEM214 loss-of-function in the midgut as shown by a decrease in enterocyte glucose uptake and an alteration in systemic glucose homeostasis. We further show that dTMEM214 regulates the apical membrane localization of dSLC5A5 in the enterocytes, thereby revealing dTMEM214 as a molecular regulator of glucose transporter in the midgut.


Assuntos
Proteínas de Drosophila , Drosophila , Proteínas Facilitadoras de Transporte de Glucose , Glucose , Animais , Transporte Biológico , Drosophila/metabolismo , Enterócitos/metabolismo , Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Homeostase , Proteínas de Drosophila/metabolismo
8.
BMC Neurosci ; 25(1): 30, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965489

RESUMO

BACKGROUND: Alzheimer's disease (AD) and frontotemporal dementia (FTD) are the two most common neurodegenerative dementias, presenting with similar clinical features that challenge accurate diagnosis. Despite extensive research, the underlying pathophysiological mechanisms remain unclear, and effective treatments are limited. This study aims to investigate the alterations in brain network connectivity associated with AD and FTD to enhance our understanding of their pathophysiology and establish a scientific foundation for their diagnosis and treatment. METHODS: We analyzed preprocessed electroencephalogram (EEG) data from the OpenNeuro public dataset, comprising 36 patients with AD, 23 patients with FTD, and 29 healthy controls (HC). Participants were in a resting state with eyes closed. We estimated the average functional connectivity using the Phase Lag Index (PLI) for lower frequencies (delta and theta) and the Amplitude Envelope Correlation with leakage correction (AEC-c) for higher frequencies (alpha, beta, and gamma). Graph theory was applied to calculate topological parameters, including mean node degree, clustering coefficient, characteristic path length, global and local efficiency. A permutation test was then utilized to assess changes in brain network connectivity in AD and FTD based on these parameters. RESULTS: Both AD and FTD patients showed increased mean PLI values in the theta frequency band, along with increases in average node degree, clustering coefficient, global efficiency, and local efficiency. Conversely, mean AEC-c values in the alpha frequency band were notably diminished, which was accompanied by decreases average node degree, clustering coefficient, global efficiency, and local efficiency. Furthermore, AD patients in the occipital region showed an increase in theta band node degree and decreased alpha band clustering coefficient and local efficiency, a pattern not observed in FTD. CONCLUSIONS: Our findings reveal distinct abnormalities in the functional network topology and connectivity in AD and FTD, which may contribute to a better understanding of the pathophysiological mechanisms of these diseases. Specifically, patients with AD demonstrated a more widespread change in functional connectivity, while those with FTD retained connectivity in the occipital lobe. These observations could provide valuable insights for developing electrophysiological markers to differentiate between the two diseases.


Assuntos
Doença de Alzheimer , Encéfalo , Eletroencefalografia , Demência Frontotemporal , Humanos , Demência Frontotemporal/fisiopatologia , Doença de Alzheimer/fisiopatologia , Feminino , Masculino , Idoso , Eletroencefalografia/métodos , Encéfalo/fisiopatologia , Pessoa de Meia-Idade , Rede Nervosa/fisiopatologia , Rede Nervosa/diagnóstico por imagem , Vias Neurais/fisiopatologia
9.
Stem Cells ; 41(5): 482-492, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36702547

RESUMO

Osteoarthritis (OA) is an entire joint disease with pathological alteration in both articular cartilage and subchondral bone. It has been recognized recently the association between metabolic syndrome and OA, particularly glucose metabolism in regulation of articular cartilage homeostasis and joint integrity. Whereas the role of glucose metabolism in subchondral bone sclerosis remains largely unknown during pathogenesis of OA. Consistent with common OA features, we observed subchondral bone sclerosis and abnormal bone remodeling in human OA joints and murine OA joints as reflected by hyperactive bone resorption and overall bone formation which was measured via dynamic histomorphometry. Osx-CreER;tdTomato mice also displayed the similar overall bone formation under injury-induced OA condition. Immunohistochemistry further revealed increased IL-1ß expression in human and murine OA subchondral bone. Given the inflammatory environment in joints under OA condition, we treated MC3T3-E1 cell, a pre-osteoblast cell line, with IL-1ß in this study and demonstrated that IL-1ß treatment could stimulate the cell osteogenic differentiation and meanwhile upregulate glycolysis and oxidative phosphorylation in cell cultures. More importantly, intraperitoneal injection of 2-deoxy-D-glucose (2-DG) and oligomycin (OGM), respectively, suppressed the subchondral bone glycolysis and oxidative phosphorylation in mice. Consequently, 2-DG and OGM treatment attenuated abnormal osteoblast differentiation and protected against aberrant bone formation in subchondral bone and articular cartilage degradation in wildtype mice following with joint injury. Collectively, these data strongly suggest glycolysis and oxidative may serve as important therapeutic targets for OA treatment.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Camundongos , Animais , Osteogênese , Esclerose/complicações , Esclerose/metabolismo , Esclerose/patologia , Osso e Ossos/metabolismo , Cartilagem Articular/patologia , Inflamação/patologia
10.
J Magn Reson Imaging ; 59(4): 1206-1217, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37526043

RESUMO

BACKGROUND: Tertiary lymphoid structures (TLSs) are potential prognostic indicators. Radiomics may help reduce unnecessary invasive operations. PURPOSE: To analyze the association between TLSs and prognosis, and to establish a nomogram model to evaluate the expression of TLSs in breast cancer (BC) patients. STUDY TYPE: Retrospective. POPULATION: Two hundred forty-two patients with localized primary BC (confirmed by surgery) were divided into BC + TLS group (N = 122) and BC - TLS group (N = 120). FIELD STRENGTH/SEQUENCE: 3.0T; Caipirinha-Dixon-TWIST-volume interpolated breath-hold sequence for dynamic contrast-enhanced (DCE) MRI and inversion-recovery turbo spin echo sequence for T2-weighted imaging (T2WI). ASSESSMENT: Three models for differentiating BC + TLS and BC - TLS were developed: 1) a clinical model, 2) a radiomics signature model, and 3) a combined clinical and radiomics (nomogram) model. The overall survival (OS), distant metastasis-free survival (DMFS), and disease-free survival (DFS) were compared to evaluate the prognostic value of TLSs. STATISTICAL TESTS: LASSO algorithm and ANOVA were used to select highly correlated features. Clinical relevant variables were identified by multivariable logistic regression. Model performance was evaluated by the area under the receiver operating characteristic (ROC) curve (AUC), and through decision curve analysis (DCA). The Kaplan-Meier method was used to calculate the survival rate. RESULTS: The radiomics signature model (training: AUC 0.766; test: AUC 0.749) and the nomogram model (training: AUC 0.820; test: AUC 0.749) showed better validation performance than the clinical model. DCA showed that the nomogram model had a higher net benefit than the other models. The median follow-up time was 52 months. While there was no significant difference in 3-year OS (P = 0.22) between BC + TLS and BC - TLS patients, there were significant differences in 3-year DFS and 3-year DMFS between the two groups. DATA CONCLUSION: The nomogram model performs well in distinguishing the presence or absence of TLS. BC + TLS patients had higher long-term disease control rates and better prognoses than those without TLS. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.


Assuntos
Neoplasias da Mama , Estruturas Linfoides Terciárias , Humanos , Feminino , Prognóstico , Neoplasias da Mama/diagnóstico por imagem , Radiômica , Estudos Retrospectivos , Imageamento por Ressonância Magnética
11.
FASEB J ; 37(8): e23091, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37432656

RESUMO

Renal ischemia-reperfusion injury (IRI) is a common reason of acute kidney injury (AKI). AKI can progress to chronic kidney disease (CKD) in some survivors. Inflammation is considered the first-line response to early-stage IRI. We previously reported that core fucosylation (CF), specifically catalyzed by α-1,6 fucosyltransferase (FUT8), exacerbates renal fibrosis. However, the FUT8 characteristics, role, and mechanism in inflammation and fibrosis transition remain unclear. Considering renal tubular cells are the trigger cells that initiate the fibrosis in the AKI-to-CKD transition in IRI, we targeted CF by generating a renal tubular epithelial cell (TEC)-specific FUT8 knockout mouse and measured FUT8-driven and downstream signaling pathway expression and AKI-to-CKD transition. During the IRI extension phase, specific FUT8 deletion in the TECs ameliorated the IRI-induced renal interstitial inflammation and fibrosis mainly via the TLR3 CF-NF-κB signaling pathway. The results firstly indicated the role of FUT8 in the transition of inflammation and fibrosis. Therefore, the loss of FUT8 in TECs may be a novel potential strategy for treating AKI-CKD transition.


Assuntos
Injúria Renal Aguda , Insuficiência Renal Crônica , Traumatismo por Reperfusão , Animais , Camundongos , Injúria Renal Aguda/etiologia , Fucosiltransferases/genética , Inflamação , Camundongos Knockout , NF-kappa B , Traumatismo por Reperfusão/genética , Receptor 3 Toll-Like
12.
Int Microbiol ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38740654

RESUMO

INTRODUCTION: Sulfur-oxidizing bacteria (SOB) play a key role in the biogeochemical cycling of sulfur. OBJECTIVES: To explore SOB diversity, distribution, and physicochemical drivers in five volcanic lakes and two springs in the Wudalianchi volcanic field, China. METHODS: This study analyzed microbial communities in samples via high-throughput sequencing of the soxB gene. Physical-chemical parameters were measured, and QIIME 2 (v2019.4), R, Vsearch, MEGA7, and Mothur processed the data. Alpha diversity indices and UPGMA clustering assessed community differences, while heat maps visualized intra-sample variations. Canoco 5.0 analyzed community-environment correlations, and NMDS, Adonis, and PcoA explored sample dissimilarities and environmental factor correlations. SPSS v.18.0 tested for statistical significance. RESULTS: The diversity of SOB in surface water was higher than in springs (more than 7.27 times). We detected SOB affiliated to ß-proteobacteria (72.3 %), α-proteobacteria (22.8 %), and γ-proteobacteria (4.2 %) distributed widely in these lakes and springs. Rhodoferax and Cupriavidus were most frequent in all water samples, while Rhodoferax and Bradyrhizobium are dominant in surface waters but rare in springs. SOB genera in both habitats were positively correlated. Co-occurrence analysis identified Bradyrhizobium, Blastochloris, Methylibium, and Metyhlobacterium as potential keystone taxa. Redundancy analysis (RDA) revealed positive correlations between SOB diversity and total carbon (TC), Fe2+, and total nitrogen (TN) in all water samples. CONCLUSION: The diversity and community structure of SOB in volcanic lakes and springs in the Wudalianchi volcanic group were clarified. Moreover, the diversity and abundance of SOB decreased with the variation of water openness, from open lakes to semi-enclosed lakes and enclosed lakes.

13.
Cell Biol Toxicol ; 40(1): 19, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573528

RESUMO

RNA-binding proteins (RBPs) make vital impacts on tumor progression and are important potential targets for tumor treatment. Previous studies have shown that RBP regulator of differentiation 1 (ROD1), enriched in the nucleus, is abnormally expressed and functions as a splicing factor in tumors; however, the mechanism underlying its involvement in gastric cancer (GC) is unknown. In this study, ROD1 is found to stimulate GC cell proliferation and metastasis and is related to poor patient prognosis. In vitro experiments showed that ROD1 influences GC proliferation and metastasis through modulating the imbalance of the level of the oncogenic gene OIP5 and the tumor suppressor gene GPD1L. Further studies showed that the N6-methyladenosine (m6A) "reader" protein YTHDC1 can interact with ROD1 and regulate the balance of the expression of the downstream molecules OIP5/GPD1L by promoting the nuclear enrichment of ROD1. Therefore, YTHDC1 stimulates GC development and progression through modulating nuclear enrichment of the splicing factor ROD1.


Assuntos
Neoplasias Gástricas , Humanos , Diferenciação Celular , Proteínas do Tecido Nervoso , Fatores de Processamento de RNA
14.
Bioorg Chem ; 148: 107459, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761707

RESUMO

Lung cancer is a malignant tumor with high mortality and drug resistance. Therefore, it is urgent to explore natural and nontoxic drugs to treat lung cancer. In this study, the natural active ingredient AANL extracted from Agrocybe aegirita was used to modify nanoselenium by an oxidation-reduction method. Transmission electron microscope detection and infrared spectroscopy showed that a novel selenium nanocomposite named AANL-SeNPs was successfully prepared. The results of nanoscale characterization showed that AANL-SeNPs had good stability and uniform dispersion in aqueous solution by zeta potential and spectrum analysis. At the cellular level, we found that AANL-SeNPs significantly inhibited the cell viability of lung cancer cells, and the cell inhibition rate of 60 nM AANL-SeNPs was 39 % in H157 cells, 67 % in H147 cells, and 62 % in A549 cells. The IC50 value of AANL-SeNPs was 51.85 nM in A549 cells and 81.57 nM in H157 cells. Moreover, AANL-SeNPs could inhibit the cell proliferation and migration, and enhance the sensitivity of lung cancer cells to osimertinib and has no toxic to normal cells. In vivo, AANL-SeNPs significantly slowed tumor growth in tumor-bearing mice by establishing a subcutaneous transplantation tumor model for lung cancer, and the tumor size was smaller and was reduced about 79 % in 2 mg/kg AANL-SeNPs group compared with PBS group. Mechanistically, a total of 38 differentially expressed proteins were identified by data-independent acquisition mass spectrometry. A significantly upregulated protein, CDC-like kinase 2 (CLK2), was screened and validated for further analysis, which showed that the expression levels of CLK2 were increased in H157 and H1437 cells after AANL-SeNPs treatment. The results obtained in this study suggest that a novel selenium nanocomposite AANL-SeNPs, which inhibits lung cancer by upregulating the expression of CLK2.


Assuntos
Antineoplásicos , Proliferação de Células , Neoplasias Pulmonares , Nanocompostos , Proteínas Tirosina Quinases , Selênio , Regulação para Cima , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Nanocompostos/química , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Animais , Selênio/química , Selênio/farmacologia , Camundongos , Regulação para Cima/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Relação Dose-Resposta a Droga , Estrutura Molecular , Relação Estrutura-Atividade , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Neoplasias Experimentais/metabolismo , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Camundongos Nus
15.
Environ Res ; 252(Pt 3): 118974, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38649016

RESUMO

A large amount of agricultural waste causes global environmental pollution. Biogas production by microbial pretreatment is an important way to utilize agricultural waste resources. In this study, Sporocytophaga CG-1 (A, cellulolytic strain) was co-cultured with Bacillus clausii HP-1 (B, non-cellulolytic strain) to analyze the effect of pretreatment of rice straw on methanogenic capacity of anaerobic digestion (AD). The results showed that weight loss rate of filter paper of co-culture combination is 53.38%, which is 29.37% higher than that of A. The synergistic effect of B on A can promote its degradation of cellulose. The cumulative methane production rate of the co-culture combination was the highest (93.04 mL/g VS substrate), which was significantly higher than that of A, B and the control group (82.38, 67.28 and 67.70 mL/g VS substrate). Auxiliary bacteria can improve cellulose degradation rate by promoting secondary product metabolism. These results provide data support for the application of co-culture strategies in the field of anaerobic digestion practices.


Assuntos
Metano , Oryza , Metano/metabolismo , Metano/biossíntese , Oryza/microbiologia , Oryza/metabolismo , Anaerobiose , Técnicas de Cocultura , Bacillus/metabolismo , Celulose/metabolismo , Biocombustíveis
16.
Nucleic Acids Res ; 50(12): 7013-7033, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35748872

RESUMO

Topoisomerase 3ß (TOP3B) and TDRD3 form a dual-activity topoisomerase complex that interacts with FMRP and can change the topology of both DNA and RNA. Here, we investigated the post-transcriptional influence of TOP3B and associated proteins on mRNA translation and turnover. First, we discovered that in human HCT116 colon cancer cells, knock-out (KO) of TOP3B had similar effects on mRNA turnover and translation as did TDRD3-KO, while FMRP-KO resulted in rather distinct effects, indicating that TOP3B had stronger coordination with TDRD3 than FMRP in mRNA regulation. Second, we identified TOP3B-bound mRNAs in HCT116 cells; we found that while TOP3B did not directly influence the stability or translation of most TOP3B target mRNAs, it stabilized a subset of target mRNAs but had a more complex effect on translation-enhancing for some mRNAs whereas reducing for others. Interestingly, a point mutation that specifically disrupted TOP3B catalytic activity only partially recapitulated the effects of TOP3B-KO on mRNA stability and translation, suggesting that the impact of TOP3B on target mRNAs is partly linked to its ability to change topology of mRNAs. Collectively, our data suggest that TOP3B-TDRD3 can regulate mRNA translation and turnover by mechanisms that are dependent and independent of topoisomerase activity.


Assuntos
Biossíntese de Proteínas , Proteínas , Humanos , RNA Mensageiro/genética
17.
Sensors (Basel) ; 24(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38543999

RESUMO

Non-invasive detection of hemoglobin (Hb) concentration is of great clinical value for health screening and intraoperative blood transfusion. However, the accuracy and stability of non-invasive detection still need to be improved to meet clinical requirement. This paper proposes a non-invasive Hb detection method using ensemble extreme learning machine (EELM) regression based on eight-wavelength PhotoPlethysmoGraphic (PPG) signals. Firstly, a mathematical model for non-invasive Hb detection based on the Beer-Lambert law is established. Secondly, the captured eight-channel PPG signals are denoised and fifty-six feature values are extracted according to the derived mathematical model. Thirdly, a recursive feature elimination (RFE) algorithm is used to select the features that contribute most to the Hb prediction. Finally, a regression model is built by integrating several independent ELM models to improve prediction stability and accuracy. Experiments conducted on 249 clinical data points (199 cases as the training dataset and 50 cases as the test dataset) evaluate the proposed method, achieving a root mean square error (RMSE) of 1.72 g/dL and a Pearson correlation coefficient (PCC) of 0.76 (p < 0.01) between predicted and reference values. The results demonstrate that the proposed non-invasive Hb detection method exhibits a strong correlation with traditional invasive methods, suggesting its potential for non-invasive detection of Hb concentration.


Assuntos
Algoritmos , Hemoglobinas , Correlação de Dados
18.
Sensors (Basel) ; 24(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38400288

RESUMO

Remote sensing image classification (RSIC) is designed to assign specific semantic labels to aerial images, which is significant and fundamental in many applications. In recent years, substantial work has been conducted on RSIC with the help of deep learning models. Even though these models have greatly enhanced the performance of RSIC, the issues of diversity in the same class and similarity between different classes in remote sensing images remain huge challenges for RSIC. To solve these problems, a duplex-hierarchy representation learning (DHRL) method is proposed. The proposed DHRL method aims to explore duplex-hierarchy spaces, including a common space and a label space, to learn discriminative representations for RSIC. The proposed DHRL method consists of three main steps: First, paired images are fed to a pretrained ResNet network for extracting the corresponding features. Second, the extracted features are further explored and mapped into a common space for reducing the intra-class scatter and enlarging the inter-class separation. Third, the obtained representations are used to predict the categories of the input images, and the discrimination loss in the label space is minimized to further promote the learning of discriminative representations. Meanwhile, a confusion score is computed and added to the classification loss for guiding the discriminative representation learning via backpropagation. The comprehensive experimental results show that the proposed method is superior to the existing state-of-the-art methods on two challenging remote sensing image scene datasets, demonstrating that the proposed method is significantly effective.

19.
J Sci Food Agric ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38979919

RESUMO

BACKGROUND: Blackberry seeds, as a by-product of processing, have potential bioactive substances and activities. A response surface method was used to determine the optimal conditions of blackberry seed extracts (BSEs) with high 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity by ultrasound-assisted extraction (UAE). The composition and antioxidant capacity of BSEs were further analyzed. RESULTS: The optimal conditions were material-to-liquid ratio of 0.07 g mL-1, ethanol concentration of 56%, extraction temperature of 39 °C and ultrasonic power of 260 W. Using these conditions, the extraction yield and total polysaccharide, phenolic and anthocyanin contents in BSEs were 0.062 g g-1 and 633.91, 36.21 and 3.07 mg g-1, respectively. The Fourier transform infrared spectra of BSEs exhibited characteristic peaks associated with polysaccharide absorption. The antioxidant capacity, DPPH and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging activity, and ferric reducing antioxidant power of BSEs were 1533.19, 1021.93 and 1093.38 mmol Trolox equivalent g-1, respectively. The delphinidin-3-O-glucoside, paeoniflorin-3-O-glucoside and cyanidin-3-O-arabinoside contents in BSEs were 3.05,12.76 and 1895.90 ± 3.45 µg g-1. Five polyphenols including gallic acid, coumaric acid, ferulic acid, catechin and caffeic acid were identified and quantified in BSEs with its contents at 8850.43, 5053.26, 4984.65, 1846.91 and 192.40 µg g-1. CONCLUSION: These results provide a method for preparing BSE containing functional components such as polysaccharides, phenols and anthocyanins through UAE, and BSEs have potential application in food industries. © 2024 Society of Chemical Industry.

20.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(2): 288-294, 2024 Apr 25.
Artigo em Zh | MEDLINE | ID: mdl-38686409

RESUMO

Monitoring of bowel sounds is an important method to assess bowel motility during sleep, but it is seriously affected by snoring noise. In this paper, the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) method was applied to remove snoring noise from bowel sounds during sleep. Specifically, the noisy bowel sounds were first band-pass filtered, then decomposed by the CEEMDAN method, and finally the appropriate components were selected to reconstruct the pure bowel sounds. The results of semi-simulated and real data showed that the CEEMDAN method was better than empirical mode decomposition and wavelet denoising method. The CEEMDAN method is used to remove snoring noise from bowel sounds during sleep, which lays an important foundation for using bowel sounds to assess the intestinal motility during sleep.


Assuntos
Sono , Ronco , Humanos , Sono/fisiologia , Ronco/fisiopatologia , Processamento de Sinais Assistido por Computador , Motilidade Gastrointestinal/fisiologia , Som , Algoritmos , Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA