Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 244: 117933, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38097061

RESUMO

Despite reliable nitrite supply through partial denitrification, the adaptation of denitrifying bacteria to low temperatures remains elusive in partial denitrification and anammox (PDA) systems. Here, temporal differentiations of the structure, activity, and relevant cold-adaptation mechanism of functional bacteria were investigated in a lab-scale PDA bioreactor at decreased temperature. Although distinct denitrifying bacteria dominated after low-temperature stress, both short- and long-term stresses exerted differential selectivity towards the species with close phylogenetic distance. Species Azonexus sp.149 showed high superiority over Azonexus sp.384 under short-term stress, and long-term stress improved the adaptation of Aquabacterium sp.93 instead of Aquabacterium sp.184. The elevated transcription of nitrite reductase genes suggested that several denitrifying bacteria (e.g., Azonexus sp.149) could compete with anammox bacteria for nitrite. Species Rivicola pingtungensis and Azonexus sp.149 could adapt through various adaptation pathways, such as the two-component system, cold shock protein (CSP), membrane alternation, and electron transport chain. By contrast, species Zoogloea sp.273 and Aquabacterium sp.93 mainly depended on the CSP and oxidative stress response. This study largely deepens our understanding of the performance deterioration in PDA systems during cold shock and provides several references for efficient adaptation to seasonal temperature fluctuation.


Assuntos
Desnitrificação , Nitritos , Nitritos/metabolismo , Temperatura , Oxidação Anaeróbia da Amônia , Filogenia , Bactérias/genética , Bactérias/metabolismo , Oxirredução , Reatores Biológicos/microbiologia , Nitrogênio/metabolismo , Esgotos
2.
Chemosphere ; 351: 141231, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237781

RESUMO

Simultaneous anammox-denitrification is effectively operated in two types, i.e., the anammox-denitritation (SAD pattern) and the anammox-denitratation (PDA pattern). The nitrate derived from inevitable nitrite oxidization likely determines the practical operational pattern of the coupling system, while little information is available regarding the microbial characteristics during the pattern conversion. Here, the single-stage bioreactor coupling anammox with denitrification was operated under conditions with a changed ratio of influent nitrite and nitrate. Results showed that the bioreactor exhibited a robust performance during the conversion from SAD to PDA patterns, corresponding with the total nitrogen removal efficiency ranging from 89.5% to 92.4%. Distinct community structures were observed in two patterns, while functional bacteria including the genera Denitratisoma, Thauera, Candidatus Brocadia, and Ca. Jettenia steadily co-existed. Meanwhile, the high transcription of hydrazine synthase genes demonstrated a stable anammox process, while the up-regulated transcription of nitrite and nitrous oxide reductase genes indicated that the complete denitrification process was enhanced for total nitrogen removal during the PDA pattern. Ecologically, stochastic processes dominantly governed the community assembly in two patterns. The PDA pattern improved the interconnectivity of communities, especially for the cooperative behaviors between dominant denitrifying bacteria and low-abundant species. These findings deepen our understanding of the microbial mechanism underlying the different patterns of the coupling system and potentially expand its engineering application.


Assuntos
Nitratos , Nitritos , Oxidação Anaeróbia da Amônia , Oxirredução , Desnitrificação , Bactérias/genética , Reatores Biológicos , Nitrogênio , Esgotos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA