Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 908
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 18(5): 519-529, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28346409

RESUMO

Obesity is associated with metabolic inflammation and endoplasmic reticulum (ER) stress, both of which promote metabolic disease progression. Adipose tissue macrophages (ATMs) are key players orchestrating metabolic inflammation, and ER stress enhances macrophage activation. However, whether ER stress pathways underlie ATM regulation of energy homeostasis remains unclear. Here, we identified inositol-requiring enzyme 1α (IRE1α) as a critical switch governing M1-M2 macrophage polarization and energy balance. Myeloid-specific IRE1α abrogation in Ern1f/f; Lyz2-Cre mice largely reversed high-fat diet (HFD)-induced M1-M2 imbalance in white adipose tissue (WAT) and blocked HFD-induced obesity, insulin resistance, hyperlipidemia and hepatic steatosis. Brown adipose tissue (BAT) activity, WAT browning and energy expenditure were significantly higher in Ern1f/f; Lyz2-Cre mice. Furthermore, IRE1α ablation augmented M2 polarization of macrophages in a cell-autonomous manner. Thus, IRE1α senses protein unfolding and metabolic and immunological states, and consequently guides ATM polarization. The macrophage IRE1α pathway drives obesity and metabolic syndrome through impairing BAT activity and WAT browning.


Assuntos
Tecido Adiposo Marrom/fisiologia , Tecido Adiposo Branco/patologia , Endorribonucleases/metabolismo , Macrófagos/fisiologia , Obesidade/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Diferenciação Celular/genética , Dieta Hiperlipídica , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático , Endorribonucleases/genética , Metabolismo Energético/genética , Humanos , Ativação de Macrófagos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Serina-Treonina Quinases/genética
2.
Proc Natl Acad Sci U S A ; 120(20): e2219083120, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155883

RESUMO

Due to their low viscosity, high mobility, and high element contents, supercritical fluids are important agents in the cycling of elements. However, the chemical composition of supercritical fluids in natural rocks is poorly understood. Here, we investigate well-preserved primary multiphase fluid inclusions (MFIs) from an ultrahigh-pressure (UHP) metamorphic vein of the Bixiling eclogite in Dabieshan, China, thus providing direct evidence for the components of supercritical fluid occurring in a natural system. Via the 3D modeling of MFIs by Raman scanning, we quantitatively determined the major composition of the fluid trapped in the MFIs. Combined with the peak-metamorphic pressure-temperature conditions and the cooccurrence of coesite, rutile, and garnet, we suggest that the trapped fluids in the MFIs represent supercritical fluids in a deep subduction zone. The strong mobility of the supercritical fluids with respect to carbon and sulfur suggests that such fluids have profound effects on global carbon and sulfur cycling.

3.
Am J Pathol ; 194(7): 1248-1261, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38599461

RESUMO

Mucosal-associated invariant T (MAIT) cells are essential in defending against infection. Sepsis is a systemic inflammatory response to infection and a leading cause of death. The relationship between the overall competency of the host immune response and disease severity is not fully elucidated. This study identified a higher proportion of circulating MAIT17 with expression of IL-17A and retinoic acid receptor-related orphan receptor γt in patients with sepsis. The proportion of MAIT17 was correlated with the severity of sepsis. Single-cell RNA-sequencing analysis revealed an enhanced expression of lactate dehydrogenase A (LDHA) in MAIT17 in patients with sepsis. Cell-culture experiments demonstrated that phosphoinositide 3-kinase-LDHA signaling was required for retinoic acid receptor-related orphan receptor γt expression in MAIT17. Finally, the elevated levels of plasma IL-18 promoted the differentiation of circulating MAIT17 cells in sepsis. In summary, this study reveals a new role of circulating MAIT17 in promoting sepsis severity and suggests the phosphoinositide 3-kinase-LDHA signaling as a driving force in MAIT17 responses.


Assuntos
Diferenciação Celular , Células T Invariantes Associadas à Mucosa , Sepse , Humanos , Sepse/imunologia , Sepse/patologia , Sepse/sangue , Células T Invariantes Associadas à Mucosa/imunologia , Células T Invariantes Associadas à Mucosa/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Idoso , Interleucina-17/metabolismo , Interleucina-17/sangue , Transdução de Sinais , Fosfatidilinositol 3-Quinases/metabolismo
4.
Eur Heart J ; 45(36): 3707-3717, 2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39217497

RESUMO

BACKGROUND AND AIMS: The role of gender in decision-making for oral anticoagulation in patients with atrial fibrillation (AF) remains controversial. METHODS: The population cohort study used electronic healthcare records of 16 587 749 patients from UK primary care (2005-2020). Primary (composite of all-cause mortality, ischaemic stroke, or arterial thromboembolism) and secondary outcomes were analysed using Cox hazard ratios (HR), adjusted for age, socioeconomic status, and comorbidities. RESULTS: 78 852 patients were included with AF, aged 40-75 years, no prior stroke, and no prescription of oral anticoagulants. 28 590 (36.3%) were women, and 50 262 (63.7%) men. Median age was 65.7 years (interquartile range 58.5-70.9), with women being older and having other differences in comorbidities. During a total follow-up of 431 086 patient-years, women had a lower adjusted primary outcome rate with HR 0.89 vs. men (95% confidence interval [CI] 0.87-0.92; P < .001) and HR 0.87 after censoring for oral anticoagulation (95% CI 0.83-0.91; P < .001). This was driven by lower mortality in women (HR 0.86, 95% CI 0.83-0.89; P < .001). No difference was identified between women and men for the secondary outcomes of ischaemic stroke or arterial thromboembolism (adjusted HR 1.00, 95% CI 0.94-1.07; P = .87), any stroke or any thromboembolism (adjusted HR 1.02, 95% CI 0.96-1.07; P = .58), and incident vascular dementia (adjusted HR 1.13, 95% CI 0.97-1.32; P = .11). Clinical risk scores were only modest predictors of outcomes, with CHA2DS2-VA (ignoring gender) superior to CHA2DS2-VASc for primary outcomes in this population (receiver operating characteristic curve area 0.651 vs. 0.639; P < .001) and no interaction with gender (P = .45). CONCLUSIONS: Removal of gender from clinical risk scoring could simplify the approach to which patients with AF should be offered oral anticoagulation.


Assuntos
Anticoagulantes , Fibrilação Atrial , Tromboembolia , Humanos , Fibrilação Atrial/complicações , Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/epidemiologia , Feminino , Masculino , Idoso , Pessoa de Meia-Idade , Anticoagulantes/efeitos adversos , Anticoagulantes/uso terapêutico , Fatores Sexuais , Tromboembolia/epidemiologia , Tromboembolia/etiologia , Tromboembolia/prevenção & controle , Reino Unido/epidemiologia , Adulto , Fatores de Risco , AVC Isquêmico/epidemiologia , Administração Oral , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/etiologia , Medição de Risco
5.
Nano Lett ; 24(5): 1784-1791, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38265953

RESUMO

Selective control of light is essential for optical science and technology, with numerous applications. However, optical selectivity in the angular momentum of light has been quite limited, remaining constant by increasing the incident light power on previous passive optical devices. Here, we demonstrate a nonlinear boost of optical selectivity in both the spin and orbital angular momentum of light through near-field selective excitation of single-mode nanolasers. Our designed hybrid nanolaser circuits consist of plasmonic metasurfaces and individually placed perovskite nanowires, enabling subwavelength focusing of angular-momentum-distinctive plasmonic fields and further selective excitation of nanolasers in nanowires. The optically selected nanolaser with a nonlinear increase of light emission greatly enhances the baseline optical selectivity offered by the metasurface from about 0.4 up to near unity. Our demonstrated hybrid nanophotonic platform may find important applications in all-optical logic gates and nanowire networks, ultrafast optical switches, nanophotonic detectors, and on-chip optical and quantum information processing.

6.
J Am Chem Soc ; 146(37): 25552-25561, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39236317

RESUMO

The synthesis of complex polysubstituted aromatic molecules from simple precursors is a central goal in organic chemistry. In this study, we developed an approach for the ortho-alkylation of iodoarenes utilizing a dual ligand catalytic system. By combining Pd/olefin ligand cooperative catalysis with bulky trialkylphosphine ligand-promoted C(sp2)-I reductive elimination, we have established an ortho-alkylative Catellani-type reaction with the aryl-iodine bond reconstruction as the final step, which opens new synthetic opportunities within the Catellani-type reactions. Through in-depth mechanistic investigations, we have isolated and characterized key organopalladium intermediates, revealing the synergistic interaction of the dual ligands in merging the Catellani-type process with C(sp2)-I reductive elimination. The present study showcases the unique advantages of Pd/olefin ligand catalysis and emphasizes the effectiveness of the dual ligand system in expanding the chemical space of the Catellani chemistry.

7.
Biochem Cell Biol ; 102(2): 169-178, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37917979

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a common malignancy with high morbidity and mortality. Insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) serves as a reader of RNA m6A (N6 methyladenosine) modification to regulate gene expression at the post-transcriptional level. Emerging evidence suggests that IGF2BP2 plays critical roles in tumorigenesis and malignant development. However, the biological function and molecular mechanism of IGF2BP2 in ESCC are not well understood. Here, we found that IGF2BP2 expression was upregulated in esophageal cancer tissues and ESCC cells, and IGF2BP2 overexpression enhanced proliferation, migration, invasion, and stem cell-like properties of ESCC cells. Conversely, the knockdown of IGF2BP2 expression inhibited malignant phenotype of ESCC cells. Mechanistically, IGF2BP2 upregulated octomer-binding transcription factor 4 (OCT4) mRNA expression, and RNA immunoprecipitation (RIP) assay proved that IGF2BP2 could interact with OCT4 mRNA. Moreover, OCT4 was modified at m6A confirmed by methylated m6A RNA immunoprecipitation (Me-RIP)-qPCR assay, and IGF2BP2 knockdown reduced OCT4 mRNA stability. These results suggested that IGF2BP2 served as a reader for m6A-modified OCT4, thus increased OCT4 mRNA expression by regulating its stability. Furthermore, the knockdown of OCT4 could reverse the effects of IGF2BP2 on ESCC cells. In conclusion, these data indicate that IGF2BP2, as a reader for m6A, plays an oncogenic role by regulating OCT4 expression in ESCC, which provides new insights into targeting IGF2BP2/OCT4 axis for the therapy of ESCC.


Assuntos
Adenina/análogos & derivados , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , RNA Mensageiro/genética , Carcinoma de Células Escamosas do Esôfago/genética , Neoplasias Esofágicas/genética , RNA , Proliferação de Células , Linhagem Celular Tumoral , Proteínas de Ligação a RNA/genética
8.
Cancer Immunol Immunother ; 73(12): 241, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39358575

RESUMO

BACKGROUND: Small cell lung cancer (SCLC) is a highly aggressive neuroendocrine tumor with high mortality, and only a limited subset of extensive-stage SCLC (ES-SCLC) patients demonstrate prolonged survival under chemoimmunotherapy, which warrants the exploration of reliable biomarkers. Herein, we built a machine learning-based model using pathomics features extracted from hematoxylin and eosin (H&E)-stained images to classify prognosis and explore its potential association with genomics and TIME. METHODS: We retrospectively recruited ES-SCLC patients receiving first-line chemoimmunotherapy at Nanjing Jinling Hospital between April 2020 and August 2023. Digital H&E-stained whole-slide images were acquired, and targeted next-generation sequencing, programmed death ligand-1 staining, and multiplex immunohistochemical staining for immune cells were performed on a subset of patients. A random survival forest (RSF) model encompassing clinical and pathomics features was established to predict overall survival. The function of putative genes was assessed via single-cell RNA sequencing. RESULTS AND CONCLUSION: During the median follow-up period of 12.12 months, 118 ES-SCLC patients receiving first-line immunotherapy were recruited. The RSF model utilizing three pathomics features and liver metastases, bone metastases, smoking status, and lactate dehydrogenase, could predict the survival of first-line chemoimmunotherapy in patients with ES-SCLC with favorable discrimination and calibration. Underlyingly, the higher RSF-Score potentially indicated more infiltration of CD8+ T cells in the stroma as well as a greater probability of MCL-1 amplification and EP300 mutation. At the single-cell level, MCL-1 was associated with TNFA-NFKB signaling and apoptosis-related processes. Hopefully, this noninvasive model could act as a biomarker for immunotherapy, potentially facilitating precision medicine in the management of ES-SCLC.


Assuntos
Genômica , Imunoterapia , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Masculino , Prognóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patologia , Feminino , Imunoterapia/métodos , Pessoa de Meia-Idade , Genômica/métodos , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/imunologia , Carcinoma de Pequenas Células do Pulmão/terapia , Carcinoma de Pequenas Células do Pulmão/patologia , Carcinoma de Pequenas Células do Pulmão/mortalidade , Estudos Retrospectivos , Biomarcadores Tumorais/genética , Idoso , Adulto
9.
BMC Plant Biol ; 24(1): 796, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39174961

RESUMO

BACKGROUND: Abiotic stress seriously affects the growth and yield of crops. It is necessary to search and utilize novel abiotic stress resistant genes for 2.0 breeding programme in quinoa. In this study, the impact of drought stress on glucose metabolism were investigated through transcriptomic and metabolomic analyses in quinoa seeds. Candidate drought tolerance genes on glucose metabolism pathway were verified by qRT-PCR combined with yeast expression system. RESULTS: From 70 quinoa germplasms, drought tolerant material M059 and drought sensitive material M024 were selected by comprehensive evaluation of drought resistance. 7042 differentially expressed genes (DEGs) were indentified through transcriptomic analyses. Gene Ontology (GO) analysis revealed that these DEGs were closely related to carbohydrate metabolic process, phosphorus-containing groups, and intracellular membrane-bounded organelles. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis detected that DEGs were related to pathways involving carbohydrate metabolisms, glycolysis and gluconeogenesis. Twelve key differentially accumulated metabolites (DAMs), (D-galactose, UDP-glucose, succinate, inositol, D-galactose, D-fructose-6-phosphate, D-glucose-6-phosphate, D-glucose-1-phosphate, dihydroxyacetone phosphate, ribulose-5-phosphate, citric acid and L-malate), and ten key candidate DEGs (CqAGAL2, CqINV, CqFrK7, CqCELB, Cqbg1x, CqFBP, CqALDO, CqPGM, CqIDH3, and CqSDH) involved in drought response were identified. CqSDH, CqAGAL2, and Cqß-GAL13 were candidate genes that have been validated in both transcriptomics and yeast expression screen system. CONCLUSION: These findings provide a foundation for elucidating the molecular regulatory mechanisms governing glucose metabolism in quinoa seeds under drought stress, providing insights for future research exploring responses to drought stress in quinoa.


Assuntos
Chenopodium quinoa , Secas , Glucose , Sementes , Chenopodium quinoa/genética , Chenopodium quinoa/metabolismo , Chenopodium quinoa/fisiologia , Glucose/metabolismo , Sementes/metabolismo , Sementes/genética , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Transcriptoma , Perfilação da Expressão Gênica , Metabolismo dos Carboidratos/genética
10.
BMC Plant Biol ; 24(1): 203, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509491

RESUMO

BACKGROUND: Quinoa leaves demonstrate a diverse array of colors, offering a potential enhancement to landscape aesthetics and the development of leisure-oriented sightseeing agriculture in semi-arid regions. This study utilized integrated transcriptomic and metabolomic analyses to investigate the mechanisms underlying anthocyanin synthesis in both emerald green and pink quinoa leaves. RESULTS: Integrated transcriptomic and metabolomic analyses indicated that both flavonoid biosynthesis pathway (ko00941) and anthocyanin biosynthesis pathway (ko00942) were significantly associated with anthocyanin biosynthesis. Differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) were analyzed between the two germplasms during different developmental periods. Ten DEGs were verified using qRT-PCR, and the results were consistent with those of the transcriptomic sequencing. The elevated expression of phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), 4-coumarate CoA ligase (4CL) and Hydroxycinnamoyltransferase (HCT), as well as the reduced expression of flavanone 3-hydroxylase (F3H) and Flavonol synthase (FLS), likely cause pink leaf formation. In addition, bHLH14, WRKY46, and TGA indirectly affected the activities of CHS and 4CL, collectively regulating the levels of cyanidin 3-O-(3'', 6''-O-dimalonyl) glucoside and naringenin. The diminished expression of PAL, 4CL, and HCT decreased the formation of cyanidin-3-O-(6"-O-malonyl-2"-O-glucuronyl) glucoside, leading to the emergence of emerald green leaves. Moreover, the lowered expression of TGA and WRKY46 indirectly regulated 4CL activity, serving as another important factor in maintaining the emerald green hue in leaves N1, N2, and N3. CONCLUSION: These findings establish a foundation for elucidating the molecular regulatory mechanisms governing anthocyanin biosynthesis in quinoa leaves, and also provide some theoretical basis for the development of leisure and sightseeing agriculture.


Assuntos
Antocianinas , Chenopodium quinoa , Antocianinas/metabolismo , Chenopodium quinoa/genética , Chenopodium quinoa/metabolismo , Perfilação da Expressão Gênica/métodos , Transcriptoma , Folhas de Planta/genética , Folhas de Planta/metabolismo , Glucosídeos , Regulação da Expressão Gênica de Plantas
11.
Radiology ; 313(1): e240288, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39436292

RESUMO

Background Time-dependent diffusion MRI has the potential to help characterize tumor cell properties; however, to the knowledge of the authors, its usefulness for breast cancer diagnosis and prognostic evaluation is unknown. Purpose To investigate the clinical value of time-dependent diffusion MRI-based microstructural mapping for noninvasive prediction of molecular subtypes and pathologic complete response (pCR) in participants with breast cancer. Materials and Methods Participants with invasive breast cancer who underwent pretreatment with time-dependent diffusion MRI between February 2021 and May 2023 were prospectively enrolled. Four microstructural parameters were estimated using the IMPULSED method (a form of time-dependent diffusion MRI), along with three apparent diffusion coefficient (ADC) measurements and a relative ADC diffusion-weighted imaging parameter. Multivariable logistic regression analysis was used to identify parameters associated with each molecular subtype and pCR. A predictive model based on associated parameters was constructed, and its performance was assessed using the area under the receiver operating characteristic curve (AUC) and compared by using the DeLong test. The time-dependent diffusion MRI parameters were validated based on correlation with pathologic measurements. Results The analysis included 408 participants with breast cancer (mean age, 51.9 years ± 9.1 [SD]). Of these, 221 participants were administered neoadjuvant chemotherapy and 54 (24.4%) achieved pCR. The time-dependent diffusion MRI parameters showed reasonable performance in helping to identify luminal A (AUC, 0.70), luminal B (AUC, 0.78), and triple-negative breast cancer (AUC, 0.72) subtypes and high performance for human epidermal growth factor receptor 2 (HER2)-enriched breast cancer (AUC, 0.85), outperforming ADC measurements (all P < .05). Progesterone receptor status (odds ratio [OR], 0.08; P = .02), HER2 status (OR, 3.36; P = .009), and the cellularity index (OR, 0.01; P = .02) were independently associated with the odds of achieving pCR. The combined model showed high performance for predicting pCR (AUC, 0.88), outperforming ADC measurements and the clinical-pathologic model (AUC, 0.73 and 0.79, respectively; P < .001). The time-dependent diffusion MRI-estimated parameters correlated well with the pathologic measurements (n = 100; r = 0.67-0.81; P < .001). Conclusion Time-dependent diffusion MRI-based microstructural mapping was an effective method for helping to predict molecular subtypes and pCR to neoadjuvant chemotherapy in participants with breast cancer. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Partridge and Xu in this issue.


Assuntos
Neoplasias da Mama , Imagem de Difusão por Ressonância Magnética , Terapia Neoadjuvante , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Imagem de Difusão por Ressonância Magnética/métodos , Terapia Neoadjuvante/métodos , Pessoa de Meia-Idade , Estudos Prospectivos , Adulto , Resultado do Tratamento , Quimioterapia Adjuvante , Valor Preditivo dos Testes , Mama/diagnóstico por imagem , Mama/patologia , Fatores de Tempo
12.
Radiology ; 311(3): e232242, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38832881

RESUMO

Background Pathologic lymphovascular space invasion (LVSI) is associated with poor outcome in endometrial cancer. Its relationship with tumor stiffness, which can be measured with use of MR elastography, has not been extensively explored. Purpose To assess whether MR elastography-based mechanical characteristics can aid in the noninvasive prediction of LVSI in patients with endometrial cancer. Materials and Methods This prospective study included consecutive adult patients with a suspected uterine tumor who underwent MRI and MR elastography between October 2022 and July 2023. A region of interest delineated on T2-weighted magnitude images was duplicated on MR elastography images and used to calculate c (stiffness in meters per second) and φ (viscosity in radians) values. Pathologic assessment of hysterectomy specimens for LVSI served as the reference standard. Data were compared between LVSI-positive and -negative groups with use of the Mann-Whitney U test. Multivariable logistic regression was used to determine variables associated with LVSI positivity and develop diagnostic models for predicting LVSI. Model performance was assessed with use of area under the receiver operating characteristic curve (AUC) and compared using the DeLong test. Results A total of 101 participants were included, 72 who were LVSI-negative (median age, 53 years [IQR, 48-62 years]) and 29 who were LVSI-positive (median age, 54 years [IQR, 49-60 years]). The tumor stiffness in the LVSI-positive group was higher than in the LVSI-negative group (median, 4.1 m/sec [IQR, 3.2-4.6 m/sec] vs 2.2 m/sec [IQR, 2.0-2.8 m/sec]; P < .001). Tumor volume, cancer antigen 125 level, and tumor stiffness were associated with LVSI positivity (adjusted odds ratio range, 1.01-9.06; P range, <.001-.04). The combined model (AUC, 0.93) showed better performance for predicting LVSI compared with clinical-radiologic model (AUC, 0.77; P = .003) and similar performance to the MR elastography-based model (AUC, 0.89; P = .06). Conclusion The addition of tumor stiffness as measured at MR elastography into a clinical-radiologic model improved prediction of LVSI in patients with endometrial cancer. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Ehman in this issue.


Assuntos
Técnicas de Imagem por Elasticidade , Neoplasias do Endométrio , Imageamento por Ressonância Magnética , Invasividade Neoplásica , Humanos , Feminino , Técnicas de Imagem por Elasticidade/métodos , Neoplasias do Endométrio/diagnóstico por imagem , Neoplasias do Endométrio/patologia , Pessoa de Meia-Idade , Estudos Prospectivos , Imageamento por Ressonância Magnética/métodos , Metástase Linfática/diagnóstico por imagem , Valor Preditivo dos Testes
13.
Small ; 20(27): e2308459, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38348906

RESUMO

The development of composites with highly efficient microwave absorption (MA) performance deeply depends on polarization loss, which can be induced by charge redistribution. Considering the fact that polarization centers can be easily obtained in graphene, herein, iron phthalocyanine (FePc) is used as polarization site to coordinate with nitrogen-doped graphene (FePc/N-rGO) to optimize MA performance comprehensively. The factors influencing MA properties focus on the interaction between FePc and N-rGO, and the change of dipole moments. The density functional theory (DFT) results demonstrated that FePc has strong interaction with N defect sites in graphene. The charge loss for FePc and charge accumulation for N-rGO occurred, leading to great increase of dipole moment, and the increased dipole moment can be acted as a descriptor to evaluate the enhanced polarization loss. Due to high charge redistribution capacity of N defect sites and FePc polarization centers, the FePc/N-rGO showed excellent MA properties in C band, and the minimum reflection loss value can reach -49.3 dB at 5.4 GHz with thickness of 3.8 mm. In addition, the fabric loaded with FePc/N-rGO showed good heat dissipation property. This work opens the door to the development of MA performance bound to polarization site with dipole moment.

14.
Small ; 20(30): e2311026, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38377298

RESUMO

Electrochemical hydrogen evolution reaction (HER) from water splitting driven by renewable energy is considered a promising method for large-scale hydrogen production, and as an alternative to noble-metal electrocatalysts, molybdenum carbide (Mo2C) has exhibited effective HER performance. However, the strong bonding strength of intermediate adsorbed H (Hads) with Mo active site slows down the HER kinetics of Mo2C. Herein, using phase-transition strategy, hexagonal ß-Mo2C could be easily transferred to cubic δ-Mo2C through electron injection triggered by tungsten (W) doping, and heterointerface-rich Mo2C-based composites, including ß-Mo2C, δ-Mo2C, and MoO2, are presented. Experimental results and density functional theory calculations reveal that W doping mainly contributes to the phase-transition process, and the generated heterointerfaces are the dominant factor in inducing remarkable electron accumulation around Mo active sites, thus weakening the Mo─H coupling. Wherein, the ß-Mo2C/MoO2 interface plays an important role in optimizing the electronic structure of Mo 3d orbital and hydrogen adsorption Gibbs free energy (ΔGH*), enabling these Mo2C-based composites to have excellent intrinsic catalytic activity like low overpotential (η10 = 99.8 mV), small Tafel slope (60.16 dec-1), and good stability in 1 m KOH. This work sheds light on phase-transition engineering and offers a convenient route to construct heterointerfaces for large-scale HER production.

15.
Planta ; 259(3): 64, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329576

RESUMO

MAIN CONCLUSION: The loss of TaMYB305 function down-regulated the expression of jasmonic acid synthesis pathway genes, which may disturb the jasmonic acid synthesis, resulting in abnormal pollen development and reduced fertility. The MYB family, as one of the largest transcription factor families found in plants, regulates plant development, especially the development of anthers. Therefore, it is important to identify potential MYB transcription factors associated with pollen development and to study its role in pollen development. Here, the transcripts of an R2R3 MYB gene TaMYB305 from KTM3315A, a thermo-sensitive cytoplasmic male-sterility line with Aegilops kotschyi cytoplasm (K-TCMS) wheat, was isolated. Quantitative real-time PCR (qRT-PCR) and promoter activity analysis revealed that TaMYB305 was primarily expressed in anthers. The TaMYB305 protein was localized in the nucleus, as determined by subcellular localization analysis. Our data demonstrated that silencing of TaMYB305 was related to abnormal development of stamen, including anther indehiscence and pollen abortion in KAM3315A plants. In addition, TaMYB305-silenced plants exhibited alterations in the transcriptional levels of genes involved in the synthesis of jasmonic acid (JA), indicating that TaMYB305 may regulate the expression of genes related to JA synthesis and play an important role during anther and pollen development of KTM3315A. These results provide novel insight into the function and molecular mechanism of R2R3-MYB genes in pollen development.


Assuntos
Aegilops , Infertilidade , Oxilipinas , Ciclopentanos , Citoplasma/genética , Genes myb , Pólen/genética , Triticum
16.
Ann Rheum Dis ; 83(4): 475-487, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38129117

RESUMO

OBJECTIVES: This phase 2b, randomised, double-blind, placebo-controlled trial evaluated the efficacy and safety of telitacicept, a novel fusion protein that neutralises signals of B lymphocyte stimulator and a proliferation-inducing ligand, in active systemic lupus erythematosus (SLE). METHODS: Adult patients with active SLE (n=249) were recruited from 29 hospitals in China and randomised 1:1:1:1 to receive subcutaneous telitacicept at 80 mg (n=62), 160 mg (n=63), 240 mg (n=62) or placebo (n=62) once weekly in addition to standard therapy. The primary endpoint was the proportion of patients achieving an SLE Responder Index 4 (SRI-4) response at week 48. Missing data were imputed using the last observation carried forward method. RESULTS: At week 48, the proportion of patients achieving an SRI-4 response was 75.8% in the 240 mg telitacicept group, 68.3% in the 160 mg group, 71.0% in the 80 mg group and 33.9% in the placebo group (all p<0.001). Significant treatment responses were observed in secondary endpoints, including a ≥4-point reduction on the Systemic Lupus Erythematosus Disease Activity Index, a lack of Physician's Global Assessment score worsening and a glucocorticoid dose reduction in the 240 mg group. Telitacicept was well tolerated, and the incidence of adverse events and serious adverse events was similar between the telitacicept and placebo groups. CONCLUSIONS: This phase 2b clinical trial met the primary endpoint. All telitacicept groups showed a significantly higher proportion of patients achieving an SRI-4 response than the placebo group at week 48, and all doses were well tolerated. These results support further investigations of telitacicept in clinical trials involving more diverse populations and larger sample sizes. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov Registry (NCT02885610).


Assuntos
Lúpus Eritematoso Sistêmico , Proteínas Recombinantes de Fusão , Adulto , Humanos , Método Duplo-Cego , Glucocorticoides/uso terapêutico , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Índice de Gravidade de Doença , Resultado do Tratamento
17.
J Autoimmun ; 147: 103233, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38797049

RESUMO

Systemic sclerosis (SSc) poses a significant challenge in autoimmunology, characterized by the development of debilitating fibrosis of skin and internal organs. The pivotal role of dysregulated T cells, notably the skewed polarization toward Th2 cells, has been implicated in the vascular damage and progressive fibrosis observed in SSc. In this study, we explored the underlying mechanisms by which cannabinoid receptor 2 (CB2) highly selective agonist HU-308 restores the imbalance of T cells to alleviate SSc. Using a bleomycin-induced SSc (BLM-SSc) mouse model, we demonstrated that HU-308 effectively attenuates skin and lung fibrosis by specifically activating CB2 on CD4+ T cells to inhibit the polarization of Th2 cells in BLM-SSc mice, which was validated by Cnr2-specific-deficient mice. Different from classical signaling downstream of G protein-coupled receptors (GPCRs), HU-308 facilitates the expression of SOCS3 protein and subsequently impedes the IL2/STAT5 signaling pathway during Th2 differentiation. The deficiency of SOCS3 partially mitigated the impact of HU-308. Analysis of a cohort comprising 80 SSc patients and 82 healthy controls revealed an abnormal elevation in the Th2/Th1 ratio in SSc patients. The proportion of Th2 cells showed a significant positive correlation with mRSS score and positivity of anti-Scl-70. Administration of HU-308 to PBMCs and peripheral CD4+ T cells from SSc patients led to the upregulation of SOCS3, which effectively suppressed the aberrantly activated STAT5 signaling pathway and the proportion of CD4+IL4+ T cells. In conclusion, our findings unveil a novel mechanism by which the CB2 agonist HU-308 ameliorates fibrosis in SSc by targeting and reducing Th2 responses. These insights provide a foundation for future therapeutic approaches in SSc by modulating Th2 responses.


Assuntos
Diferenciação Celular , Modelos Animais de Doenças , Receptor CB2 de Canabinoide , Escleroderma Sistêmico , Transdução de Sinais , Proteína 3 Supressora da Sinalização de Citocinas , Células Th2 , Animais , Escleroderma Sistêmico/tratamento farmacológico , Escleroderma Sistêmico/patologia , Células Th2/imunologia , Camundongos , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/metabolismo , Diferenciação Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Humanos , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Feminino , Janus Quinases/metabolismo , Masculino , Camundongos Knockout , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Bleomicina , Agonistas de Receptores de Canabinoides/farmacologia , Agonistas de Receptores de Canabinoides/uso terapêutico , Pessoa de Meia-Idade
18.
Arch Biochem Biophys ; 758: 110064, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38897534

RESUMO

Chemoresistance is one of the major hindrances to many cancer therapies, including esophageal squamous cell carcinoma (ESCC). Ferroptosis, a new programmed cell death, plays an essential role in chemoresistance. IQ-domain GTPase activating protein 1 (IQGAP1) is a scaffold protein and functions as an oncogene in various human malignancies. However, the underlying effect and molecular mechanisms of IQGAP1 on paclitaxel (PTX) resistance and ferroptosis in ESCC remain to be elucidated. In this study, we found that IQGAP1 was highly expressed in ESCC tissues and could as a potential biomarker for diagnosis and predicting the prognosis of ESCC. Functional studies revealed that IQGAP1 overexpression reduced the sensitivity of ESCC cells to PTX by enhancing ESCC cell viability and proliferation and inhibiting cell death, and protected ESCC cells from ferroptosis, whereas IQGAP1 knockdown exhibited contrary effects. Importantly, reductions of chemosensitivity and ferroptosis caused by IQGAP1 overexpression were reversed with ferroptosis inducer RSL3, while the increases of chemosensitivity and ferroptosis caused by IQGAP1 knockdown were reversed with ferroptosis inhibitor ferrostatin-1 (Fer-1) in ESCC cells, indicating that IQGAP1 played a key role in resistance to PTX through regulating ferroptosis. Mechanistically, we demonstrated that IQGAP1 overexpression upregulated the expression of Yes-associated protein (YAP), the central mediator of the Hippo pathway. YAP inhibitor Verteporfin (VP) could reverse the effects of IQGAP1 overexpression on ESCC chemoresistance and ferroptosis. Taken together, our findings suggest that IQGAP1 promotes chemoresistance by blocking ferroptosis through targeting YAP. IQGAP1 may be a novel therapeutic target for overcoming chemoresistance in ESCC.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Ferroptose , Paclitaxel , Proteínas Ativadoras de ras GTPase , Humanos , Ferroptose/efeitos dos fármacos , Proteínas Ativadoras de ras GTPase/metabolismo , Proteínas Ativadoras de ras GTPase/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Paclitaxel/farmacologia , Proteínas de Sinalização YAP/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos
19.
Diabetes Obes Metab ; 26(10): 4251-4260, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39020261

RESUMO

AIM: The 2019 ESC/EASD guidelines categorize cardiovascular disease risk (CVD) in patients with diabetes mellitus (DM). Assessing CVD risk is necessary to identify individuals at very high risk of CVD, enabling tailored and precise intervention for this high-risk population. This study aims to evaluate the severity of a very high risk for CVD stratification among patients with type 2 DM (T2DM) across different regions in China. METHODS: We conducted a cross-sectional screening study from 1 January 2020 to 30 December 2022. Disease duration, body mass index (BMI), targeted organ damage, such as atherosclerotic heart disease, proteinuria, impaired renal function, left ventricular hypertrophy, retinopathy and known CVD risk factors, were collected from diabetic patients by professionally trained physicians. The risk of CV in patients with DM was categorized into two groups: very high risk and others, according to the 2019 ESC/EASD guidelines. RESULTS: In total, 1 870 720 participants from 1669 hospitals in 30 provinces of China, excluding Tibet, Taiwan, Hong Kong and Macao, were enrolled from 2020 to 2022, among whom 67.50% of patients with T2DM were at very high risk for CVD. The proportions of very high-risk T2DM were higher in Northeast China (75.82%), Central China (73.65%) and Southwest China (72.66%), while the lowest prevalence of very high-risk T2DM was found in Southern China (60.15%). The multivariate binary logistic regression analyses suggested that the category of very high risk for CVD is associated with age [odds ratio (OR) = 1.04; 95% confidence interval (CI): 1.04-1.04; p < .0001], BMI (OR = 1.07; 95% CI: 1.07-1.07; p < .0001), duration of DM (OR = 1.05; 95% CI: 1.05-1.05; p < .0001), hypertension (OR = 3.75; 95% CI: 3.72-3.78; p < .0001), dyslipidaemia (OR = 5.22; 95% CI: 5.18-5.27; p < .0001) and smoking (OR = 2.92; 95% CI: 2.89-2.95; p < .0001). CONCLUSIONS: This study represented the largest observational study of CVD risk assessment in patients with T2DM in China. The CVD risk situation of patients with diabetes in China is critical, and comprehensive control and management of CVD risk factors, such as hypertension, BMI and dyslipidaemia, in patients with DM need to be strengthened in patients with T2DM in China.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/complicações , Estudos Transversais , Masculino , Feminino , Pessoa de Meia-Idade , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , China/epidemiologia , Prevalência , Idoso , Adulto , Fatores de Risco , Fatores de Risco de Doenças Cardíacas , Programas de Rastreamento/métodos , Medição de Risco/métodos
20.
Phys Chem Chem Phys ; 26(8): 7010-7019, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38345334

RESUMO

The negative Poisson's ratio (NPR) effect usually endows materials with promising ductility and shear resistance, facilitating a wider range of applications. It has been generally acknowledged that alloys show strong advantages in manipulating material properties. Thus, a thought-provoking question arises: how does alloying affect the NPR? In this paper, based on first-principles calculations, we systematically study the NPR in two-dimensional (2D) GaN and AlN, and their alloy of AlxGa1-xN. It is intriguing to find that the NPR in AlxGa1-xN is significantly enhanced compared to the parent materials of GaN and AlN. The underlying mechanism mainly originates from a counter-intuitive increase of the bond angle θ. We further study the microscopic origin of the anomalies by electron orbital analysis as well as electron localization functions. It is revealed that the distribution and movement of electrons change with the applied strain, providing a fundamental view on the effect of strain on lattice parameters and the NPR. The physical origin as revealed in this study deepens the understanding of the NPR and shed light on the future design of modern nanoscale electromechanical devices with fantastic functions based on the auxetic nanomaterials and nanostructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA