Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 416
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Cell ; 182(1): 245-261.e17, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32649877

RESUMO

Genomic studies of lung adenocarcinoma (LUAD) have advanced our understanding of the disease's biology and accelerated targeted therapy. However, the proteomic characteristics of LUAD remain poorly understood. We carried out a comprehensive proteomics analysis of 103 cases of LUAD in Chinese patients. Integrative analysis of proteome, phosphoproteome, transcriptome, and whole-exome sequencing data revealed cancer-associated characteristics, such as tumor-associated protein variants, distinct proteomics features, and clinical outcomes in patients at an early stage or with EGFR and TP53 mutations. Proteome-based stratification of LUAD revealed three subtypes (S-I, S-II, and S-III) related to different clinical and molecular features. Further, we nominated potential drug targets and validated the plasma protein level of HSP 90ß as a potential prognostic biomarker for LUAD in an independent cohort. Our integrative proteomics analysis enables a more comprehensive understanding of the molecular landscape of LUAD and offers an opportunity for more precise diagnosis and treatment.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Neoplasias Pulmonares/metabolismo , Proteômica , Adenocarcinoma de Pulmão/genética , Povo Asiático/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Sistemas de Liberação de Medicamentos , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Masculino , Pessoa de Meia-Idade , Mutação/genética , Estadiamento de Neoplasias , Fosfoproteínas/metabolismo , Análise de Componente Principal , Prognóstico , Proteoma/metabolismo , Resultado do Tratamento , Proteína Supressora de Tumor p53/genética
2.
Plant Cell ; 36(5): 1736-1754, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38315889

RESUMO

Roses are among the most popular ornamental plants cultivated worldwide for their great economic, symbolic, and cultural importance. Nevertheless, rapid petal senescence markedly reduces rose (Rosa hybrida) flower quality and value. Petal senescence is a developmental process tightly regulated by various phytohormones. Ethylene accelerates petal senescence, while gibberellic acid (GA) delays this process. However, the molecular mechanisms underlying the crosstalk between these phytohormones in the regulation of petal senescence remain largely unclear. Here, we identified SENESCENCE-ASSOCIATED F-BOX (RhSAF), an ethylene-induced F-box protein gene encoding a recognition subunit of the SCF-type E3 ligase. We demonstrated that RhSAF promotes degradation of the GA receptor GIBBERELLIN INSENSITIVE DWARF1 (RhGID1) to accelerate petal senescence. Silencing RhSAF expression delays petal senescence, while suppressing RhGID1 expression accelerates petal senescence. RhSAF physically interacts with RhGID1s and targets them for ubiquitin/26S proteasome-mediated degradation. Accordingly, ethylene-induced RhGID1C degradation and RhDELLA3 accumulation are compromised in RhSAF-RNAi lines. Our results demonstrate that ethylene antagonizes GA activity through RhGID1 degradation mediated by the E3 ligase RhSAF. These findings enhance our understanding of the phytohormone crosstalk regulating petal senescence and provide insights for improving flower longevity.


Assuntos
Etilenos , Proteínas F-Box , Flores , Regulação da Expressão Gênica de Plantas , Giberelinas , Proteínas de Plantas , Rosa , Etilenos/metabolismo , Etilenos/farmacologia , Giberelinas/metabolismo , Giberelinas/farmacologia , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Rosa/genética , Rosa/efeitos dos fármacos , Rosa/metabolismo , Flores/genética , Flores/efeitos dos fármacos , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Senescência Vegetal/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/genética
3.
PLoS Biol ; 22(3): e3002330, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38442096

RESUMO

Cilia play critical roles in cell signal transduction and organ development. Defects in cilia function result in a variety of genetic disorders. Cep290 is an evolutionarily conserved ciliopathy protein that bridges the ciliary membrane and axoneme at the basal body (BB) and plays critical roles in the initiation of ciliogenesis and TZ assembly. How Cep290 is maintained at BB and whether axonemal and ciliary membrane localized cues converge to determine the localization of Cep290 remain unknown. Here, we report that the Cep131-Cep162 module near the axoneme and the Cby-Fam92 module close to the membrane synergistically control the BB localization of Cep290 and the subsequent initiation of ciliogenesis in Drosophila. Concurrent deletion of any protein of the Cep131-Cep162 module and of the Cby-Fam92 module leads to a complete loss of Cep290 from BB and blocks ciliogenesis at its initiation stage. Our results reveal that the first step of ciliogenesis strictly depends on cooperative and retroactive interactions between Cep131-Cep162, Cby-Fam92 and Cep290, which may contribute to the complex pathogenesis of Cep290-related ciliopathies.


Assuntos
Corpos Basais , Cognição , Animais , Sinais (Psicologia) , Axonema , Cílios/genética , Drosophila/genética
4.
Proc Natl Acad Sci U S A ; 121(11): e2315550121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38437556

RESUMO

TAX1BP1, a multifunctional autophagy adaptor, plays critical roles in different autophagy processes. As an autophagy receptor, TAX1BP1 can interact with RB1CC1, NAP1, and mammalian ATG8 family proteins to drive selective autophagy for relevant substrates. However, the mechanistic bases underpinning the specific interactions of TAX1BP1 with RB1CC1 and mammalian ATG8 family proteins remain elusive. Here, we find that there are two distinct binding sites between TAX1BP1 and RB1CC1. In addition to the previously reported TAX1BP1 SKICH (skeletal muscle and kidney enriched inositol phosphatase (SKIP) carboxyl homology)/RB1CC1 coiled-coil interaction, the first coiled-coil domain of TAX1BP1 can directly bind to the extreme C-terminal coiled-coil and Claw region of RB1CC1. We determine the crystal structure of the TAX1BP1 SKICH/RB1CC1 coiled-coil complex and unravel the detailed binding mechanism of TAX1BP1 SKICH with RB1CC1. Moreover, we demonstrate that RB1CC1 and NAP1 are competitive in binding to the TAX1BP1 SKICH domain, but the presence of NAP1's FIP200-interacting region (FIR) motif can stabilize the ternary TAX1BP1/NAP1/RB1CC1 complex formation. Finally, we elucidate the molecular mechanism governing the selective interactions of TAX1BP1 with ATG8 family members by solving the structure of GABARAP in complex with the non-canonical LIR (LC3-interacting region) motif of TAX1BP1, which unveils a unique binding mode between LIR and ATG8 family protein. Collectively, our findings provide mechanistic insights into the interactions of TAX1BP1 with RB1CC1 and mammalian ATG8 family proteins and are valuable for further understanding the working mode and function of TAX1BP1 in autophagy.


Assuntos
Autofagia , Proteínas de Ciclo Celular , Animais , Família da Proteína 8 Relacionada à Autofagia , Sítios de Ligação , Rim , Mamíferos
5.
Proc Natl Acad Sci U S A ; 121(37): e2402817121, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39236246

RESUMO

Autophagy of glycogen (glycophagy) is crucial for the maintenance of cellular glucose homeostasis and physiology in mammals. STBD1 can serve as an autophagy receptor to mediate glycophagy by specifically recognizing glycogen and relevant key autophagic factors, but with poorly understood mechanisms. Here, we systematically characterize the interactions of STBD1 with glycogen and related saccharides, and determine the crystal structure of the STBD1 CBM20 domain with maltotetraose, uncovering a unique binding mode involving two different oligosaccharide-binding sites adopted by STBD1 CBM20 for recognizing glycogen. In addition, we demonstrate that the LC3-interacting region (LIR) motif of STBD1 can selectively bind to six mammalian ATG8 family members. We elucidate the detailed molecular mechanism underlying the selective interactions of STBD1 with ATG8 family proteins by solving the STBD1 LIR/GABARAPL1 complex structure. Importantly, our cell-based assays reveal that both the STBD1 LIR/GABARAPL1 interaction and the intact two oligosaccharide binding sites of STBD1 CBM20 are essential for the effective association of STBD1, GABARAPL1, and glycogen in cells. Finally, through mass spectrometry, biochemical, and structural modeling analyses, we unveil that STBD1 can directly bind to the Claw domain of RB1CC1 through its LIR, thereby recruiting the key autophagy initiation factor RB1CC1. In all, our findings provide mechanistic insights into the recognitions of glycogen, ATG8 family proteins, and RB1CC1 by STBD1 and shed light on the potential working mechanism of STBD1-mediated glycophagy.


Assuntos
Família da Proteína 8 Relacionada à Autofagia , Autofagia , Glicogênio , Animais , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Autofagia/fisiologia , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Família da Proteína 8 Relacionada à Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/química , Sítios de Ligação , Cristalografia por Raios X , Glicogênio/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Modelos Moleculares , Ligação Proteica
6.
Plant Physiol ; 194(4): 2338-2353, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38084893

RESUMO

Maintaining proper flower size is vital for plant reproduction and adaption to the environment. Petal size is determined by spatiotemporally regulated cell proliferation and expansion. However, the mechanisms underlying the orchestration of cell proliferation and expansion during petal growth remains elusive. Here, we determined that the transition from cell proliferation to expansion involves a series of distinct and overlapping processes during rose (Rosa hybrida) petal growth. Changes in cytokinin content were associated with the transition from cell proliferation to expansion during petal growth. RNA sequencing identified the AP2/ERF transcription factor gene RELATED TO AP2 4-LIKE (RhRAP2.4L), whose expression pattern positively associated with cytokinin levels during rose petal development. Silencing RhRAP2.4L promoted the transition from cell proliferation to expansion and decreased petal size. RhRAP2.4L regulates cell proliferation by directly repressing the expression of KIP RELATED PROTEIN 2 (RhKRP2), encoding a cell cycle inhibitor. In addition, we also identified BIG PETALub (RhBPEub) as another direct target gene of RhRAP2.4L. Silencing RhBPEub decreased cell size, leading to reduced petal size. Furthermore, the cytokinin signaling protein ARABIDOPSIS RESPONSE REGULATOR 14 (RhARR14) activated RhRAP2.4L expression to inhibit the transition from cell proliferation to expansion, thereby regulating petal size. Our results demonstrate that RhRAP2.4L performs dual functions in orchestrating cell proliferation and expansion during petal growth.


Assuntos
Arabidopsis , Rosa , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Regulação da Expressão Gênica no Desenvolvimento , Citocininas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proliferação de Células/genética , Flores
7.
J Med Genet ; 61(4): 325-331, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-37890998

RESUMO

BACKGROUND: Mutations in the tropomyosin receptor kinase fused (TFG) gene are associated with various neurological disorders, including autosomal recessive hereditary spastic paraplegia (HSP), autosomal dominant hereditary motor and sensory neuropathy with proximal dominant involvement (HMSN-P) and autosomal dominant type of Charcot-Marie-Tooth disease type 2. METHODS: Whole genome sequencing and whole-exome sequencing were used, followed by Sanger sequencing for validation. Haplotype analysis was performed to confirm the inheritance mode of the novel TFG mutation in a large Chinese family with HSP. Additionally, another family diagnosed with HMSN-P and carrying the reported TFG mutation was studied. Clinical data and muscle pathology comparisons were drawn between patients with HSP and patients with HMSN-P. Furthermore, functional studies using skin fibroblasts derived from patients with HSP and patients with HMSN-P were conducted to investigate the pathomechanisms of TFG mutations. RESULTS: A novel heterozygous TFG variant (NM_006070.6: c.125G>A (p.R42Q)) was identified and caused pure HSP. We further confirmed that the well-documented recessively inherited spastic paraplegia, caused by homozygous TFG mutations, exists in a dominantly inherited form. Although the clinical features and muscle pathology between patients with HSP and patients with HMSN-P were distinct, skin fibroblasts derived from both patient groups exhibited reduced levels of autophagy-related proteins and the presence of TFG-positive puncta. CONCLUSIONS: Our findings suggest that autophagy impairment may serve as a common pathomechanism among different clinical phenotypes caused by TFG mutations. Consequently, targeting autophagy may facilitate the development of a uniform treatment for TFG-related neurological disorders.


Assuntos
Neuropatia Hereditária Motora e Sensorial , Doenças do Sistema Nervoso , Paraplegia Espástica Hereditária , Humanos , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/patologia , Proteínas/genética , Mutação/genética , Linhagem , Paraplegia , Proteínas de Transporte Vesicular/genética
8.
Proc Natl Acad Sci U S A ; 119(12): e2116776119, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35294289

RESUMO

Shigella flexneri, a gram-negative bacterium, is the major culprit of bacterial shigellosis and causes a large number of human infection cases and deaths worldwide annually. For evading the host immune response during infection, S. flexneri secrets two highly similar E3 ligases, IpaH1.4 and IpaH2.5, to subvert the linear ubiquitin chain assembly complex (LUBAC) of host cells, which is composed of HOIP, HOIL-1L, and SHARPIN. However, the detailed molecular mechanism underpinning the subversion of the LUBAC by IpaH1.4/2.5 remains elusive. Here, we demonstrated that IpaH1.4 can specifically recognize HOIP and HOIL-1L through its leucine-rich repeat (LRR) domain by binding to the HOIP RING1 domain and HOIL-1L ubiquitin-like (UBL) domain, respectively. The determined crystal structures of IpaH1.4 LRR/HOIP RING1, IpaH1.4 LRR/HOIL-1L UBL, and HOIP RING1/UBE2L3 complexes not only elucidate the binding mechanisms of IpaH1.4 with HOIP and HOIL-1L but also unveil that the recognition of HOIP by IpaH1.4 can inhibit the E2 binding of HOIP. Furthermore, we demonstrated that the interaction of IpaH1.4 LRR with HOIP RING1 or HOIL-1L UBL is essential for the ubiquitination of HOIP or HOIL-1L in vitro as well as the suppression of NF-κB activation by IpaH1.4 in cells. In summary, our work elucidated that in addition to inducing the proteasomal degradation of LUBAC, IpaH1.4 can also inhibit the E3 activity of LUBAC by blocking its E2 loading and/or disturbing its stability, thereby providing a paradigm showing how a bacterial E3 ligase adopts multiple tactics to subvert the key LUBAC of host cells.


Assuntos
Shigella flexneri , Ubiquitina-Proteína Ligases , Humanos , NF-kappa B/metabolismo , Shigella flexneri/genética , Shigella flexneri/metabolismo , Transdução de Sinais , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
9.
J Cell Sci ; 135(14)2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35735031

RESUMO

Laminar shear stress (Lss) is an important anti-atherosclerosis (anti-AS) factor, but its mechanism network is not clear. Therefore, this study aimed to identify how Lss acts against AS formation from a new perspective. In this study, we analyzed high-throughput sequencing data from static and Lss-treated human aortic and human umbilical vein endothelial cells (HAECs and HUVECs, respectively) and found that the expression of CX3CL1, which is a target gene closely related to AS development, was lower in the Lss group. Lss alleviated the inflammatory response in TNF-α (also known as TNF)-activated HAECs by regulating the miR-29b-3p/CX3CL1 axis, and this was achieved by blocking nuclear factor (NF)-κB signaling. In complementary in vivo experiments, a high-fat diet (HFD) induced inflammatory infiltration and plaque formation in the aorta, both of which were significantly reduced after injection of agomir-miRNA-29b-3p via the tail vein into HFD-fed ApoE-/- mice. In conclusion, this study reveals that the Lss-sensitive miR-29b-3p/CX3CL1 axis is an important regulatory target that affects vascular endothelial inflammation and AS development. Our study provides new insights into the prevention and treatment of AS.


Assuntos
Aterosclerose , MicroRNAs , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Quimiocina CX3CL1/genética , Quimiocina CX3CL1/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos , Camundongos Knockout para ApoE , MicroRNAs/metabolismo , Monócitos/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo
10.
Plant Biotechnol J ; 22(3): 774-784, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37942846

RESUMO

Flowering time is of great agricultural importance and the timing and extent of flowering usually determines yield and availability of flowers, fruits and seeds. Identification of genes determining flowering has important practical applications for tomato breeding. Here we demonstrate the roles of the FANTASTIC FOUR (FAF) gene family in regulating tomato flowering time. In this plant-specific gene family, SlFAF1/2a shows a constitutive expression pattern during the transition of the shoot apical meristem (SAM) from vegetative to reproductive growth and significantly influences flowering time. Overexpressing SlFAF1/2a causes earlier flowering compared with the transformations of other genes in the FAF family. SlFAF1/2c also positively regulates tomato flowering, although to a lesser extent. The other members of the SlFAF gene family, SlFAF1/2b, SlFAF3/4a and SlFAF3/4b, are negative regulators of tomato flowering and faf1/2b, faf3/4a and faf3/4b single mutants all display early flowering. We generated a series of early flowering mutants using the CRISPR/Cas9 editing system, and the faf1/2b faf3/4a faf3/4b triple mutant flowering earliest compared with other mutants. More importantly, these mutants show no adverse effect on yield. Our results have uncovered the role of the FAF gene family in regulating tomato flowering time and generated early flowering germplasms for molecular breeding.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sistemas CRISPR-Cas/genética , Melhoramento Vegetal , Mutação/genética , Flores , Regulação da Expressão Gênica de Plantas/genética
11.
J Hum Genet ; 69(1): 3-11, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37821671

RESUMO

Complex chromosomal rearrangements (CCRs) can result in spontaneous abortions, infertility, and malformations in newborns. In this study, we explored a familial CCR involving chromosome 6 by combining optical genomic mapping (OGM) and molecular cytogenetic methodologies. Within this family, the father and the paternal grandfather were both asymptomatic carriers of an identical balanced CCR, while the two offspring with an unbalanced paternal-origin CCR and two microdeletions presented with clinical manifestation. The first affected child, a 5-year-old boy, exhibited neurodevelopmental delay, while the second, a fetus, presented with hydrops fetalis. SNP-genotype analysis revealed a recombination event during gamete formation in the father that may have contributed to the deletion in his offspring. Meanwhile, the couple's haplotypes will facilitate the selection of normal gametes in the setting of assisted reproduction. Our study demonstrated the potential of OGM in identifying CCRs and its ability to work with current methodologies to refine precise breakpoints and construct accurate haplotypes for couples with a CCR.


Assuntos
Cromossomos Humanos Par 6 , Translocação Genética , Pré-Escolar , Feminino , Humanos , Recém-Nascido , Masculino , Gravidez , Aberrações Cromossômicas , Cromossomos Humanos Par 6/genética , Análise Citogenética , Genômica
12.
Clin Proteomics ; 21(1): 2, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182978

RESUMO

Despite recent innovations in imaging and genomic screening promotes advance in diagnosis and treatment of lung adenocarcinoma (LUAD), there remains high mortality of LUAD and insufficient understanding of LUAD biology. Our previous study performed an integrative multi-omic analysis of LUAD, filling the gap between genomic alterations and their biological proteome effects. However, more detailed molecular characterization and biomarker resources at proteome level still need to be uncovered. In this study, a quantitative proteomic experiment of patient-derived benign lung disease samples was carried out. After that, we integrated the proteomic data with previous dataset of 103 paired LUAD samples. We depicted the proteomic differences between non-cancerous and tumor samples and among diverse pathological subtypes. We also found that up-regulated mitophagy was a significant characteristic of early-stage LUAD. Additionally, our integrative analysis filtered out 75 potential prognostic biomarkers and validated two of them in an independent LUAD serum cohort. This study provided insights for improved understanding proteome abnormalities of LUAD and the novel prognostic biomarker discovery offered an opportunity for LUAD precise management.

13.
Plant Cell ; 33(4): 1229-1251, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-33693903

RESUMO

Flowers are the core reproductive structures and key distinguishing features of angiosperms. Flower opening to expose stamens and gynoecia is important in cases where pollinators much be attracted to promote cross-pollination, which can enhance reproductive success and species preservation. The floral opening process is accompanied by the coordinated movement of various floral organs, particularly petals. However, the mechanisms underlying petal movement and flower opening are not well understood. Here, we integrated anatomical, physiological, and molecular approaches to determine the petal movement regulatory network using rose (Rosa hybrida) as a model. We found that PETAL MOVEMENT-RELATED PROTEIN1 (RhPMP1), a homeodomain transcription factor (TF) gene, is a direct target of ETHYLENE INSENSITIVE3, a TF that functions downstream of ethylene signaling. RhPMP1 expression was upregulated by ethylene and specifically activated endoreduplication of parenchyma cells on the adaxial side of the petal (ADSP) base by inducing the expression of RhAPC3b, a gene encoding the core subunit of the Anaphase-Promoting Complex. Cell expansion of the parenchyma on the ADSP base was subsequently enhanced, thus resulting in asymmetric growth of the petal base, leading to the typical epinastic movement of petals and flower opening. These findings provide insights into the pathway regulating petal movement and associated flower-opening mechanisms.�.


Assuntos
Etilenos/metabolismo , Flores/crescimento & desenvolvimento , Rosa/crescimento & desenvolvimento , Ciclopropanos/farmacologia , Etilenos/farmacologia , Flores/efeitos dos fármacos , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Células Vegetais/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Rosa/efeitos dos fármacos , Rosa/genética , Rosa/metabolismo
14.
Chemistry ; 30(37): e202401178, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38705854

RESUMO

Some nanomaterials with intrinsic protease-like activity have the advantages of good stability, biosafety, low price, large-scale preparation and unique property of nanomaterials, which are promising alternatives for natural proteases in various applications. An especial term, "nanoprotease", has been coined to stress the intrinsic proteolytic property of these nanomaterials. As a new generation of artificial proteases, they have become a burgeoning field, attracting many researchers to design and synthesize high performance nanoproteases. In this review, we summarize recent progress on all types of nanoproteases with regard of their activity, mechanism and application and introduce a new and effective strategy for engineering high-performance nanoproteases. In addition, we discuss the challenges and opportunities of nanoprotease research in the future.


Assuntos
Biotecnologia , Nanoestruturas , Peptídeo Hidrolases , Peptídeo Hidrolases/metabolismo , Peptídeo Hidrolases/química , Nanoestruturas/química , Engenharia de Proteínas
15.
Chemistry ; : e202402582, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39253847

RESUMO

Nano bimetallic oxides as nanoproteases have the great advantages in the heterogeneous hydrolysis of proteins. Here, we report that bimetallic delafossite CuFeO2 submicron particles (CuFeO2 SMPs) display a high protease activity towards selective cleavage of peptide bond involving hydrophobic residue at 25 centidegree. CuFeO2 SMPs have excellent regeneration performance with high structural stability. The strong Lewis acidity of Fe(III) and the strong nucleophilicity of Cu(I) bound hydroxyl groups are both necessary for the high protease activity of CuFeO2 SMPs. Low-valent metal ion has a great advantage in that low-valent Cu(I) bound hydroxyl has strong nucleophilicity, resulting in promotion of protein hydrolysis via high-efficient bimetallic catalysis. This study provides evidence that the protease activity of CuFeO2 SMPs depends on metal ion-bound hydroxyls on their surface. Our findings highlight that the valence of metal ions in artificial protease and their surface hydroxyls are two important factors that determine their catalytic efficiency.

16.
Ann Hematol ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38761184

RESUMO

Bruton's tyrosine kinase inhibitors (BTKi) exhibit superior efficacy in relapsed/refractory primary central nervous system lymphoma (PCNSL), but few studies have evaluated patients with newly diagnosed PCNSL, and even fewer studies have evaluated differences in efficacy between treatment with BTKi and traditional chemotherapy. This study retrospectively analyzed the clinical characteristics of 86 patients with PCNSL and identified predictors of poor prognosis for overall survival (OS). After excluding patients who only received palliative care, 82 patients were evaluated for efficacy and survival. According to the induction regimen, patients were divided into the traditional chemotherapy, BTKi combination therapy, and radiotherapy groups; the objective response rates (ORR) of the three groups were 71.4%, 96.2%, and 71.4% (P = 0.037), respectively. Both median progression-free survival and median duration of remission showed statistically significant differences (P = 0.019 and P = 0.030, respectively). The median OS of the BTKi-containing therapy group was also longer than that of the traditional chemotherapy group (not reached versus 47.8 (32.5-63.1) months, P = 0.038).Seventy-one patients who achieved an ORR were further analyzed, and achieved an ORR after four cycles of treatment and maintenance therapy had prolonged OS (P = 0.003 and P = 0.043, respectively). In conclusion, survival, and prognosis of patients with newly diagnosed PCNSL are influenced by the treatment regimen, with the BTKi-containing regimen showing great potential.

17.
Microb Cell Fact ; 23(1): 233, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39174991

RESUMO

BACKGROUND: Methyl methacrylate (MMA) is a key precursor of polymethyl methacrylate, extensively used as a transparent thermoplastic in various industries. Conventional MMA production poses health and environmental risks; hence, citramalate serves as an alternative bacterial compound precursor for MMA production. The highest citramalate titer was previously achieved by Escherichia coli BW25113. However, studies on further improving citramalate production through metabolic engineering are limited, and phage contamination is a persistent problem in E. coli fermentation. RESULTS: This study aimed to construct a phage-resistant E. coli BW25113 strain capable of producing high citramalate titers from glucose. First, promoters and heterologous cimA genes were screened, and an effective biosynthetic pathway for citramalate was established by overexpressing MjcimA3.7, a mutated cimA gene from Methanococcus jannaschii, regulated by the BBa_J23100 promoter in E. coli. Subsequently, a phage-resistant E. coli strain was engineered by integrating the Ssp defense system into the genome and mutating key components of the phage infection cycle. Then, the strain was engineered to include the non-oxidative glycolysis pathway while removing the acetate synthesis pathway to enhance the supply of acetyl-CoA. Furthermore, glucose utilization by the strain improved, thereby increasing citramalate production. Ultimately, 110.2 g/L of citramalate was obtained after 80 h fed-batch fermentation. The citramalate yield from glucose and productivity were 0.4 g/g glucose and 1.4 g/(L·h), respectively. CONCLUSION: This is the highest reported citramalate titer and productivity in E. coli without the addition of expensive yeast extract and additional induction in fed-bath fermentation, emphasizing its potential for practical applications in producing citramalate and its derivatives.


Assuntos
Escherichia coli , Fermentação , Glucose , Glicólise , Engenharia Metabólica , Escherichia coli/metabolismo , Escherichia coli/genética , Engenharia Metabólica/métodos , Glucose/metabolismo , Vias Biossintéticas , Regiões Promotoras Genéticas , Malatos
18.
J Fluoresc ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38193952

RESUMO

Fluorescence intensity and selective recognition ability are crucial factors in determining the analytical techniques for fluorescent probes. In this study, a core-shell fluorescent material, composed of silver nanoparticles@nitrogen-doped graphene quantum dots (Ag NPs@N/GQDs), was synthesised using mango leaves as the raw material through a thermal cracking method, resulting in strong fluorescence luminescence intensity. By employing noradrenaline as a template molecule and using a surface molecular imprinting technique, a molecularly imprinted membrane (MIP) was formed on the surface of the fluorescent material, that was subsequently eluted to obtain a highly specific, fluorescent probe capable of recognising noradrenaline. The probe captured various concentrations of noradrenaline using the MIP, which decreased the fluorescence intensity. Then a method for detecting trace amounts of noradrenaline was established. This method exhibited a linear range from 0.5 -700 pM with a detection limit of 0.154 pM. The proposed method was implemented in banana samples. Satisfactory recoveries were confirmed at four different concentrations. The method presented a relative standard deviation (RSD) of less than 5.0%.

19.
Artigo em Inglês | MEDLINE | ID: mdl-39259476

RESUMO

OPINION STATEMENT: Hepatocellular carcinoma (HCC) is a common type of tumor worldwide. The development of systemic treatment of advanced HCC has remained stagnant for a considerable period. During the last years, a series of new treatment regimens based on the combination of immunotherapeutic drugs and targeted drugs have been gradually developed, increased the objective response rate (ORR), overall survival (OS), and progression free survival (PFS) of HCC patients. Among the different combination therapy groups, atezolizumab plus bevacizumab and sintilimab plus IBI-305 seem to have unique advantages, while head-to-head comparisons are still needed. A comprehensive understanding of the developments, the ongoing clinical trials and the mechanisms of combination of immunotherapy and targeted therapy might lead to the development of new combination strategies and solving current challenges such as the molecular biomarkers, the clinical administration order of drugs and the second-line treatments after combination therapy.

20.
Antonie Van Leeuwenhoek ; 118(1): 8, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39305338

RESUMO

A novel bacterial strain, designated DW002T, was isolated from the sea ice of Cape Evans, McMurdo Sound, Antarctica. Cells of the strain were Gram-negative, obligate anaerobic, motile, non-flagellated, and short rod-shaped. The strain DW002T grew at 4-32 â„ƒ (optimum at 22-28 â„ƒ) and thrived best at pH 7.0, NaCl concentration of 2.5% (w/v). The predominant isoprenoid quinone of strain DW002T was menaquinone-7 (MK-7). The major fatty acids (> 10%) of DW002T were iso-C15:0, anteiso-C15:0 and iso-C17:1ω9c. The predominant polar lipids of strain DW002T contained two phosphatidylethanolamines, one unidentified glycolipid, one unidentified aminolipid and four unidentified lipids. The DNA G + C content of the strain DW002T was 34.8%. Strain DW002T encoded 237 carbohydrate-active enzymes. The strain DW002T had genes associated with dissimilatory nitrate reduction and assimilatory sulfate reduction metabolic pathways. Based on distinct physiological, chemotaxonomic, genome analysis and phylogenetic differences compared to other members of the phylogenetically related genera in the family Marinifilaceae, strain DW002T is proposed to represent a novel genus within the family. Therefore, the name Paralabilibaculum antarcticum gen. nov., sp. nov. is proposed. The type strain is DW002T (=KCTC 25274T=MCCC 1K06067T).


Assuntos
Composição de Bases , DNA Bacteriano , Ácidos Graxos , Camada de Gelo , Filogenia , RNA Ribossômico 16S , Regiões Antárticas , RNA Ribossômico 16S/genética , Ácidos Graxos/metabolismo , Camada de Gelo/microbiologia , DNA Bacteriano/genética , Anaerobiose , Técnicas de Tipagem Bacteriana , Fosfolipídeos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA