Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 345
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 177(2): 370-383.e15, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30905475

RESUMO

Contractile injection systems (CISs) are cell-puncturing nanodevices that share ancestry with contractile tail bacteriophages. Photorhabdus virulence cassette (PVC) represents one group of extracellular CISs that are present in both bacteria and archaea. Here, we report the cryo-EM structure of an intact PVC from P. asymbiotica. This over 10-MDa device resembles a simplified T4 phage tail, containing a hexagonal baseplate complex with six fibers and a capped 117-nanometer sheath-tube trunk. One distinct feature of the PVC is the presence of three variants for both tube and sheath proteins, indicating a functional specialization of them during evolution. The terminal hexameric cap docks onto the topmost layer of the inner tube and locks the outer sheath in pre-contraction state with six stretching arms. Our results on the PVC provide a framework for understanding the general mechanism of widespread CISs and pave the way for using them as delivery tools in biological or therapeutic applications.


Assuntos
Photorhabdus/química , Photorhabdus/ultraestrutura , Bacteriófago T4/química , Membrana Celular/química , Microscopia Crioeletrônica/métodos , Modelos Moleculares , Photorhabdus/metabolismo , Conformação Proteica , Sistemas de Secreção Tipo VI/metabolismo
2.
EMBO J ; 43(12): 2337-2367, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38649537

RESUMO

Mitochondria are cellular powerhouses that generate energy through the electron transport chain (ETC). The mitochondrial genome (mtDNA) encodes essential ETC proteins in a compartmentalized manner, however, the mechanism underlying metabolic regulation of mtDNA function remains unknown. Here, we report that expression of tricarboxylic acid cycle enzyme succinate-CoA ligase SUCLG1 strongly correlates with ETC genes across various TCGA cancer transcriptomes. Mechanistically, SUCLG1 restricts succinyl-CoA levels to suppress the succinylation of mitochondrial RNA polymerase (POLRMT). Lysine 622 succinylation disrupts the interaction of POLRMT with mtDNA and mitochondrial transcription factors. SUCLG1-mediated POLRMT hyposuccinylation maintains mtDNA transcription, mitochondrial biogenesis, and leukemia cell proliferation. Specifically, leukemia-promoting FMS-like tyrosine kinase 3 (FLT3) mutations modulate nuclear transcription and upregulate SUCLG1 expression to reduce succinyl-CoA and POLRMT succinylation, resulting in enhanced mitobiogenesis. In line, genetic depletion of POLRMT or SUCLG1 significantly delays disease progression in mouse and humanized leukemia models. Importantly, succinyl-CoA level and POLRMT succinylation are downregulated in FLT3-mutated clinical leukemia samples, linking enhanced mitobiogenesis to cancer progression. Together, SUCLG1 connects succinyl-CoA with POLRMT succinylation to modulate mitochondrial function and cancer development.


Assuntos
Biogênese de Organelas , Succinato-CoA Ligases , Animais , Humanos , Camundongos , Acil Coenzima A/metabolismo , Acil Coenzima A/genética , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , DNA Mitocondrial/metabolismo , DNA Mitocondrial/genética , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/genética , Leucemia/metabolismo , Leucemia/genética , Leucemia/patologia , Mitocôndrias/metabolismo , Mitocôndrias/genética , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Succinato-CoA Ligases/metabolismo , Succinato-CoA Ligases/genética
3.
Proc Natl Acad Sci U S A ; 120(34): e2305142120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37585462

RESUMO

Introducing nitrogen fixation (nif  ) genes into eukaryotic genomes and targeting Nif components to mitochondria or chloroplasts is a promising strategy for engineering nitrogen-fixing plants. A prerequisite for achieving nitrogen fixation in crops is stable and stoichiometric expression of each component in organelles. Previously, we designed a polyprotein-based nitrogenase system depending on Tobacco Etch Virus protease (TEVp) to release functional Nif components from five polyproteins. Although this system satisfies the demand for specific expression ratios of Nif components in Escherichia coli, we encountered issues with TEVp cleavage of polyproteins targeted to yeast mitochondria. To overcome this obstacle, a version of the Nif polyprotein system was constructed by replacing TEVp cleavage sites with minimal peptide sequences, identified by knowledge-based engineering, that are susceptible to cleavage by the endogenous mitochondrial-processing peptidase. This replacement not only further reduces the number of genes required, but also prevents potential precleavage of polyproteins outside the target organelle. This version of the polyprotein-based nitrogenase system achieved levels of nitrogenase activity in E. coli, comparable to those observed with the TEVp-based polyprotein nitrogenase system. When applied to yeast mitochondria, stable and balanced expression of Nif components was realized. This strategy has potential advantages, not only for transferring nitrogen fixation to eukaryotic cells, but also for the engineering of other metabolic pathways that require mitochondrial compartmentalization.


Assuntos
Escherichia coli , Fixação de Nitrogênio , Fixação de Nitrogênio/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Saccharomyces cerevisiae/metabolismo , Poliproteínas/genética , Poliproteínas/metabolismo , Nitrogenase/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Nitrogênio/metabolismo
4.
BMC Psychiatry ; 24(1): 249, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565988

RESUMO

BACKGROUND: Both genetic and environmental factors play crucial roles in the development of major depressive disorder (MDD) and suicide attempts (SA). However, the interaction between both items remains unknown. This study aims to explore the interactions between the genetic variants of the serotonin 2 A receptor (HTR2A) and the nitric oxide synthase 1 (NOS1) and environmental factors in patients who experience MDD and SA. METHODS: A total of 334 patients with MDD and a history of SA (MDD-SA) were recruited alongside 518 patients with MDD with no history of SA (MDD-NSA), and 716 healthy controls (HC). The demographic data and clinical characteristics were collected. Sequenom mass spectrometry was used to detect eight tag-single nucleotide polymorphisms (tagSNPs) in HTR2A (rs1328683, rs17068986, and rs3125) and NOS1 (rs1123425, rs2682826, rs3741476, rs527590, and rs7959232). Generalized multifactor dimensionality reduction (GMDR) was used to analyze the gene-environment interactions. RESULTS: Four tagSNPs (rs17068986, rs3125, rs527590, and rs7959232) exhibited significant differences between the three groups. However, these differences were not significant between the MDD-SA and MDD-NSA groups after Bonferroni correction. A logistic regression analysis revealed that negative life events (OR = 1.495, 95%CI: 1.071-2.087, P = 0.018), self-guilt (OR = 2.263, 95%CI: 1.515-3.379, P < 0.001), and negative cognition (OR = 2.252, 95%CI: 1.264-4.013, P = 0.006) were all independently associated with SA in patients with MDD. Furthermore, GMDR analysis indicated a significant interaction between HTR2A rs3125 and negative life events. Negative life events in conjunction with the HTR2A rs3125 CG + GG genotype were associated with a higher SA risk in patients with MDD when compared to the absence of negative life events in conjunction with the CC genotype (OR = 2.547, 95% CI: 1.264-5.131, P = 0.009). CONCLUSION: Several risk factors and a potential interaction between HTR2A rs3125 and negative life events were identified in patients with SA and MDD. The observed interaction likely modulates the risk of MDD and SA, shedding light on the pathogenesis of SA in patients with MDD.


Assuntos
Transtorno Depressivo Maior , Humanos , Estudos Transversais , Transtorno Depressivo Maior/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Tentativa de Suicídio
5.
Mol Cell ; 64(4): 673-687, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27840030

RESUMO

Distinctive from their normal counterparts, cancer cells exhibit unique metabolic dependencies on glutamine to fuel anabolic processes. Specifically, pancreatic ductal adenocarcinoma (PDAC) cells rely on an unconventional metabolic pathway catalyzed by aspartate aminotransferase, malate dehydrogenase 1 (MDH1), and malic enzyme 1 to rewire glutamine metabolism and support nicotinamide adenine dinucleotide phosphate (NADPH) production. Here, we report that methylation on arginine 248 (R248) negatively regulates MDH1. Protein arginine methyltransferase 4 (PRMT4/CARM1) methylates and inhibits MDH1 by disrupting its dimerization. Knockdown of MDH1 represses mitochondria respiration and inhibits glutamine metabolism, which sensitizes PDAC cells to oxidative stress and suppresses cell proliferation. Meanwhile, re-expression of wild-type MDH1, but not its methylation-mimetic mutant, protects cells from oxidative injury and restores cell growth and clonogenic activity. Importantly, MDH1 is hypomethylated at R248 in clinical PDAC samples. Our study reveals that arginine methylation of MDH1 by CARM1 regulates cellular redox homeostasis and suppresses glutamine metabolism of pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático/genética , Regulação Neoplásica da Expressão Gênica , Glutamina/metabolismo , Malato Desidrogenase (NADP+)/genética , Neoplasias Pancreáticas/genética , Proteína-Arginina N-Metiltransferases/genética , Arginina/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células , Células HEK293 , Humanos , Malato Desidrogenase (NADP+)/antagonistas & inibidores , Malato Desidrogenase (NADP+)/metabolismo , Metilação , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Modelos Moleculares , NADP/biossíntese , Oxirredução , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Multimerização Proteica , Estrutura Secundária de Proteína , Proteína-Arginina N-Metiltransferases/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais
6.
Oral Dis ; 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735833

RESUMO

BACKGROUND: Diabetes is accompanied by a high prevalence of hyposalivation, causing severe damage to oral and systemic health. Mitochondrial dynamics play important roles in the pathogenesis of various diabetic complications; however, little is known about their roles in diabetic hyposalivation. MATERIALS AND METHODS: A diabetic mouse model and a high glucose (HG)-induced diabetic submandibular gland (SMG) cell model were employed. RESULTS: More mitochondria surrounded by autophagosomes and higher expression of mitophagy-related proteins were detected in the SMGs of diabetic mice and HG-treated SMG cells. In diabetic SMGs, dynamin-related protein 1 (DRP1) was upregulated, whereas mitofusin-2 was downregulated both in vivo and in vitro. Shortened mitochondria and impaired mitochondrial functions were observed in the HG group. A DRP1-specific inhibitor, mdivi-1, suppressed mitochondrial fission and mitophagy, as well as restored mitochondrial functions in the HG condition. Moreover, the interaction of F-actin and DRP1 was enhanced in the diabetic group. Inhibiting F-actin with cytochalasin D repaired the injured effects of HG on mitochondrial dynamics and functions. Conversely, the F-actin-polymerization-inducer jasplakinolide aggravated mitochondrial fission and dysfunction. CONCLUSIONS: F-actin contributes to HG-evoked mitochondrial fission by interacting with DRP1, which induces mitophagy and impairs mitochondrial function in SMG cells, ultimately damaging the SMG.

7.
PLoS Genet ; 17(6): e1009617, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34111137

RESUMO

The energetic requirements for biological nitrogen fixation necessitate stringent regulation of this process in response to diverse environmental constraints. To ensure that the nitrogen fixation machinery is expressed only under appropriate physiological conditions, the dedicated NifL-NifA regulatory system, prevalent in Proteobacteria, plays a crucial role in integrating signals of the oxygen, carbon and nitrogen status to control transcription of nitrogen fixation (nif) genes. Greater understanding of the intricate molecular mechanisms driving transcriptional control of nif genes may provide a blueprint for engineering diazotrophs that associate with cereals. In this study, we investigated the properties of a single amino acid substitution in NifA, (NifA-E356K) which disrupts the hierarchy of nif regulation in response to carbon and nitrogen status in Azotobacter vinelandii. The NifA-E356K substitution enabled overexpression of nitrogenase in the presence of excess fixed nitrogen and release of ammonia outside the cell. However, both of these properties were conditional upon the nature of the carbon source. Our studies reveal that the uncoupling of nitrogen fixation from its assimilation is likely to result from feedback regulation of glutamine synthetase, allowing surplus fixed nitrogen to be excreted. Reciprocal substitutions in NifA from other Proteobacteria yielded similar properties to the A. vinelandii counterpart, suggesting that this variant protein may facilitate engineering of carbon source-dependent ammonia excretion amongst diverse members of this family.


Assuntos
Amônia/metabolismo , Azotobacter vinelandii/genética , Proteínas de Bactérias/genética , Glutamato-Amônia Ligase/genética , Nitrogênio/metabolismo , Nitrogenase/genética , Fatores de Transcrição/genética , Substituição de Aminoácidos , Azotobacter vinelandii/enzimologia , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Regulação Bacteriana da Expressão Gênica , Teste de Complementação Genética , Glutamato-Amônia Ligase/metabolismo , Mutação , Fixação de Nitrogênio , Nitrogenase/metabolismo , Oxigênio/metabolismo , Solo/química , Microbiologia do Solo , Fatores de Transcrição/metabolismo , Transcrição Gênica
8.
Antimicrob Agents Chemother ; 67(11): e0092123, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37800959

RESUMO

Pseudomonas aeruginosa easily produces drug-resistant mutants. A large number of mutational resistome genes exist in the genome of P. aeruginosa. In this study, whole genome sequencing analysis of a multidrug-resistant P. aeruginosa strain isolated by in vitro antibiotic treatment showed a mutation in the cpxS gene. Random mutagenesis of cpxS was conducted and introduced into the PA14ΔcpxS strain. Numerous CpxS mutants, including 14 different single amino acid substitutions, were identified, which led to reduced antibiotic susceptibility. Moreover, some of them were also present in the published genomes of P. aeruginosa isolates. Around cpxS, a gene coding for a putative sensor kinase, the nearest gene coding for a response regulator is cpxR in the genome of P. aeruginosa. Deletion of cpxR restored antibiotic susceptibility in the above cpxS mutant strains. As an extension of our previous work, where the expression of the mexAB-oprM operon is directly activated by CpxR in P. aeruginosa, in this study, we showed that the expression of the mexA promoter was increased in the above cpxS mutant strains in a cpxR-dependent manner, and mexA is prerequisite for the reduced antibiotic susceptibility. Therefore, we propose that the putative sensor kinase CpxS, together with CpxR, comprises a two-component regulatory system regulating the expression of the mexAB-oprM operon in P. aeruginosa. Our work indicates that cpxS, as a novel member of mutational resistome, plays important roles on the development of multidrug resistance in P. aeruginosa.


Assuntos
Proteínas de Bactérias , Infecções por Pseudomonas , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Pseudomonas aeruginosa , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Membrana Transportadoras/genética , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Mutação/genética , Infecções por Pseudomonas/tratamento farmacológico
9.
J Oral Pathol Med ; 52(4): 342-350, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36625499

RESUMO

BACKGROUND: There are still some controversies about the results of anti-BRAF V600E-specific antibody immunohistochemistry in ameloblastomas. This study aimed to examine the accuracy of V600E-specific antibody immunohistochemistry in detection of BRAF V600E mutation in ameloblastoma tissue sections of different ages. METHODS: The BRAF V600E status of 64 ameloblastoma specimens was assessed using both Sanger sequencing and V600E-specific antibody immunohistochemistry, and the sensitivity, specificity, positive predictive value, and negative predictive value were calculated. The difference in V600E-specific antibody immunohistochemistry staining intensity among the three groups of ameloblastoma tissue blocks of different ages was evaluated by chi-square test. The consistency between V600E-specific antibody immunohistochemistry and DNA sequencing results and the V600E-specific antibody immunohistochemistry staining intensity of 15 paired newly-cut and 3-month storage sections of the same 15 ameloblastomas were also compared. RESULTS: For detection of BRAF V600E mutation, the V600E-specific antibody immunohistochemistry had high sensitivity (98.21% 55/56), specificity (87.5% 7/8), positive predictive value (98.21% 55/56), and negative predictive value (87.5% 7/8). Heterogeneity of the staining intensity was observed in the same tissue section, but all or none expression pattern was noticed in the solid tumor nests. The storage time of paraffin tissue blocks ranging from 2 to 14 years did not affect the V600E-specific antibody-positive staining intensity. However, the three-month storage sections showed a significant diminishment of V600E-specific antibody-positive staining signals. CONCLUSIONS: The BRAF V600E-specific antibody immunohistochemistry is suitable for routine detection of BRAF V600E mutation in ameloblastomas. The all or none expression pattern suggests the BRAF V600E mutation may be an early event in the pathogenesis of ameloblastoma.


Assuntos
Ameloblastoma , Humanos , Ameloblastoma/diagnóstico , Ameloblastoma/genética , Ameloblastoma/patologia , Biomarcadores Tumorais/genética , Distribuição de Qui-Quadrado , Imuno-Histoquímica , Mutação , Proteínas Proto-Oncogênicas B-raf/genética
10.
J Sep Sci ; 46(19): e2300159, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37525329

RESUMO

Qingshen granule, composed of 14 herbal drugs, is primarily used as the assistant therapy for chronic kidney disease. Qingshen granule chemical composition was complex, but its chemical constituents and the pharmacodynamic material basis remain unreported. Ultra-high-performance liquid chromatography (UHPLC)-quadrupole-orbitrap high-resolution mass spectrometry was applied to recognize the chemical constituents of Qingshen granule. The analysis was performed using the ACQUITY UHPLC BEH C18 column (2.1 × 50 mm, 1.7 µm) with acetonitrile-0.1% formic acid as the mobile phase for gradient elution. The data were collected using heated electrospray ionization in positive and negative ion modes. This study successfully applied the UPHLC-quadrupole-orbitrap high-resolution mass spectrometry technique with the Compound Discoverer 3.3 platform to analyze Qingshen granule chemical composition. A total of 127 and 42 chemical components were identified in Qingshen granule in vitro and in vivo, respectively. In the tissue distribution of Qingshen granule, 9, 10, 11, 10, and 18 prototype components were detected in the heart, liver, spleen, lungs, and kidneys, respectively. Qingshen granule chemical constituents were characterized rapidly for the first time in this study, laying a foundation for further research on the substance basis and quality control of Qingshen granule in treating chronic kidney disease.

11.
Adv Exp Med Biol ; 1442: 45-64, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38228958

RESUMO

Hematopoietic stem cells (HSCs) are multipotent stem cells that can self-renew and generate all blood cells of different lineages. The system is under tight control in order to maintain a precise equilibrium of the HSC pool and the effective production of mature blood cells to support various biological activities. Cell metabolism can regulate different molecular activities, such as epigenetic modification and cell cycle regulation, and subsequently affects the function and maintenance of HSC. Upon malignant transformation, oncogenic drivers in malignant hematopoietic cells can remodel the metabolic pathways for supporting the oncogenic growth. The dysregulation of metabolism results in oncogene addiction, implying the development of malignancy-specific metabolism-targeted therapy. In this chapter, we will discuss the significance of different metabolic pathways in hematopoiesis, specifically, the distinctive metabolic dependency in hematopoietic malignancies and potential metabolic therapy.


Assuntos
Neoplasias Hematológicas , Hematopoese , Humanos , Hematopoese/fisiologia , Células-Tronco Hematopoéticas , Neoplasias Hematológicas/metabolismo , Células-Tronco Multipotentes , Epigênese Genética , Diferenciação Celular
12.
Proc Natl Acad Sci U S A ; 117(28): 16537-16545, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32601191

RESUMO

Engineering biological nitrogen fixation in eukaryotic cells by direct introduction of nif genes requires elegant synthetic biology approaches to ensure that components required for the biosynthesis of active nitrogenase are stable and expressed in the appropriate stoichiometry. Previously, the NifD subunits of nitrogenase MoFe protein from Azotobacter vinelandii and Klebsiella oxytoca were found to be unstable in yeast and plant mitochondria, respectively, presenting a bottleneck to the assembly of active MoFe protein in eukaryotic cells. In this study, we have delineated the region and subsequently a key residue, NifD-R98, from K. oxytoca that confers susceptibility to protease-mediated degradation in mitochondria. The effect observed is pervasive, as R98 is conserved among all NifD proteins analyzed. NifD proteins from four representative diazotrophs, but not their R98 variants, were observed to be unstable in yeast mitochondria. Furthermore, by reconstituting mitochondrial-processing peptidases (MPPs) from yeast, Oryza sativa, Nicotiana tabacum, and Arabidopsis thaliana in Escherichia coli, we demonstrated that MPPs are responsible for cleavage of NifD. These results indicate a pervasive effect on the stability of NifD proteins in mitochondria resulting from cleavage by MPPs. NifD-R98 variants that retained high levels of nitrogenase activity were obtained, with the potential to stably target active MoFe protein to mitochondria. This reconstitution approach could help preevaluate the stability of Nif proteins for plant expression and paves the way for engineering active nitrogenase in plant organelles.


Assuntos
Proteínas de Bactérias/genética , Expressão Gênica , Klebsiella oxytoca/enzimologia , Nitrogenase/genética , Engenharia de Proteínas/métodos , Biologia Sintética/métodos , Proteínas de Bactérias/metabolismo , Klebsiella oxytoca/genética , Mitocôndrias/enzimologia , Mitocôndrias/genética , Nitrogenase/metabolismo , Plantas/genética , Plantas/metabolismo , Processamento de Proteína Pós-Traducional
13.
Sensors (Basel) ; 23(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37430888

RESUMO

The SnS/SnS2 heterostructure was fabricated by the chemical vapor deposition method. The crystal structure properties of SnS2 and SnS were characterized by X-ray diffraction (XRD) pattern, Raman spectroscopy, and field emission scanning electron microscopy (FESEM). The frequency dependence photoconductivity explores its carrier kinetic decay process. The SnS/SnS2 heterostructure shows that the ratio of short time constant decay process reaches 0.729 with a time constant of 4.3 × 10-4 s. The power-dependent photoresponsivity investigates the mechanism of electron-hole pair recombination. The results indicate that the photoresponsivity of the SnS/SnS2 heterostructure has been increased to 7.31 × 10-3 A/W, representing a significant enhancement of approximately 7 times that of the individual films. The results show the optical response speed has been improved by using the SnS/SnS2 heterostructure. These results indicate an application potential of the layered SnS/SnS2 heterostructure for photodetection. This research provides valuable insights into the preparation of the heterostructure composed of SnS and SnS2, and presents an approach for designing high-performance photodetection devices.

14.
Int J Mol Sci ; 24(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36902368

RESUMO

OBJECTIVES: Titanium implants are regarded as a promising treatment modality for replacing missing teeth. Osteointegration and antibacterial properties are both desirable characteristics for titanium dental implants. The aim of this study was to create zinc (Zn)-, strontium (Sr)-, and magnesium (Mg)-multidoped hydroxyapatite (HAp) porous coatings, including HAp, Zn-doped HAp, and Zn-Sr-Mg-doped HAp, on titanium discs and implants using the vapor-induced pore-forming atmospheric plasma spraying (VIPF-APS) technique. METHODS: The mRNA and protein levels of osteogenesis-associated genes such as collagen type I alpha 1 chain (COL1A1), decorin (DCN), osteoprotegerin (TNFRSF11B), and osteopontin (SPP1) were examined in human embryonic palatal mesenchymal cells. The antibacterial effects against periodontal bacteria, including Porphyromonas gingivalis and Prevotella nigrescens, were investigated. In addition, a rat animal model was used to evaluate new bone formation via histologic examination and micro-computed tomography (CT). RESULTS: The ZnSrMg-HAp group was the most effective at inducing mRNA and protein expression of TNFRSF11B and SPP1 after 7 days of incubation, and TNFRSF11B and DCN after 11 days of incubation. In addition, both the ZnSrMg-HAp and Zn-HAp groups were effective against P. gingivalis and P. nigrescens. Furthermore, according to both in vitro studies and histologic findings, the ZnSrMg-HAp group exhibited the most prominent osteogenesis and concentrated bone growth along implant threads. SIGNIFICANCE: A porous ZnSrMg-HAp coating using VIPF-APS could serve as a novel technique for coating titanium implant surfaces and preventing further bacterial infection.


Assuntos
Durapatita , Osteogênese , Ratos , Humanos , Animais , Titânio/farmacologia , Magnésio , Zinco , Microtomografia por Raio-X , Hidroxiapatitas , Gases , Estrôncio , Materiais Revestidos Biocompatíveis , Propriedades de Superfície
15.
J Biol Chem ; 295(33): 11938-11946, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32641495

RESUMO

Metabolites are not only substrates in metabolic reactions, but also signaling molecules controlling a wide range of cellular processes. Discovery of the oncometabolite 2-hydroxyglutarate provides an important link between metabolic dysfunction and cancer, unveiling the signaling function of metabolites in regulating epigenetic and epitranscriptomic modifications, genome integrity, and signal transduction. It is now known that cancer cells remodel their metabolic network to support biogenesis, caused by or resulting in the dysregulation of various metabolites. Cancer cells can sense alterations in metabolic intermediates to better coordinate multiple biological processes and enhance cell metabolism. Recent studies have demonstrated that metabolite signaling is involved in the regulation of malignant transformation, cell proliferation, epithelial-to-mesenchymal transition, differentiation blockade, and cancer stemness. Additionally, intercellular metabolite signaling modulates inflammatory response and immunosurveillance in the tumor microenvironment. Here, we review recent advances in cancer-associated metabolite signaling. An in depth understanding of metabolite signaling will provide new opportunities for the development of therapeutic interventions that target cancer.


Assuntos
Glutaratos/metabolismo , Redes e Vias Metabólicas , Metaboloma , Neoplasias/metabolismo , Animais , Epigênese Genética , Humanos , Metabolômica , Neoplasias/genética , Transdução de Sinais , Microambiente Tumoral
16.
Chemistry ; 27(8): 2699-2706, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32969106

RESUMO

The convenient cross-coupling of sp2 or sp3 carbons with a specific boron vertex on carborane cage represents significant synthetic values and insurmountable challenges. In this work, we report an Rh-catalyzed reaction between o-carborane and N-acyl-glutarimides to construct various Bcage -C bonds. Under the optimized condition, the removable imine directing group (DG) leads to B(3)- or B(3,6)-C couplings, while the pyridyl DG leads to B(3,5)-Ar coupling. In particular, an unexpected rearrangement of amide reagent is observed in pyridyl directed B(4)-C(sp3 ) formation. This scalable protocol has many advantages, including easy access, the use of cheap and widely available coupling agents, no requirement of an external ligand, base or oxidant, high efficiency, and a broad substrate scope. Leveraging the RhI dimer and twisted amides, this method enables straightforward access to diversely substituted and therapeutically important carborane derivatives at boron site, and provides a highly valuable vista for carborane-based drug screening.

17.
Proc Natl Acad Sci U S A ; 115(36): E8509-E8517, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30061389

RESUMO

Re-engineering of complex biological systems (CBS) is an important goal for applications in synthetic biology. Efforts have been made to simplify CBS by refactoring a large number of genes with rearranged polycistrons and synthetic regulatory circuits. Here, a posttranslational protein-splicing strategy derived from RNA viruses was exploited to minimize gene numbers of the classic nitrogenase system, where the expression stoichiometry is particularly important. Operon-based nif genes from Klebsiella oxytoca were regrouped into giant genes either by fusing genes together or by expressing polyproteins that are subsequently cleaved with Tobacco Etch Virus protease. After several rounds of selection based on protein expression levels and tolerance toward a remnant C-terminal ENLYFQ-tail, a system with only five giant genes showed optimal nitrogenase activity and supported diazotrophic growth of Escherichia coli This study provides an approach for efficient translation from an operon-based system into a polyprotein-based assembly that has the potential for portable and stoichiometric expression of the complex nitrogenase system in eukaryotic organisms.


Assuntos
Proteínas de Bactérias , Escherichia coli , Klebsiella oxytoca/genética , Microrganismos Geneticamente Modificados , Fixação de Nitrogênio , Óperon , Poliproteínas , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Endopeptidases/genética , Endopeptidases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/metabolismo , Poliproteínas/biossíntese , Poliproteínas/genética
18.
J Formos Med Assoc ; 120(2): 819-826, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32888843

RESUMO

BACKGROUND/PURPOSE: Our previous study found the serum gastric parietal cell antibody (GPCA) positivity in 12.3% of burning mouth syndrome (BMS) patients. This study assessed whether GPCA-positive BMS (GPCA+BMS) patients had significantly higher frequencies of macrocytosis, anemia, hematinic deficiencies, and hyperhomocysteinemia than healthy control subjects or GPCA-negative BMS (GPCA-BMS) patients. METHODS: The mean corpuscular volume, blood hemoglobin (Hb), and serum iron, vitamin B12, folic acid, homocysteine, and GPCA levels were measured and compared between any two of three groups of 109 GPCA+BMS patients, 775 GPCA-BMS patients, and 442 healthy control subjects. RESULTS: We found that 109 GPCA+BMS patients had significantly higher frequencies of macrocytosis, blood Hb and serum iron and vitamin B12 deficiencies, and hyperhomocysteinemia than 442 healthy control subjects (all P-values < 0.001) and significantly higher frequencies of macrocytosis, blood Hb and serum vitamin B12 deficiencies, and hyperhomocysteinemia than 775 GPCA-BMS patients (all P-values < 0.01). Moreover, 775 GPCA-BMS patients had significantly higher frequencies of macrocytosis, blood Hb and serum iron, vitamin B12, and folic acid deficiencies, and hyperhomocysteinemia than 442 healthy control subjects (all P-values < 0.005). Pernicious anemia (45.5%) and normocytic anemia (24.2%) were the two most common types of anemia in 33 anemic GPCA+BMS patients. Moreover, normocytic anemia (61.3%), thalassemia trait-induced anemia (15.5%), and iron deficiency anemia (14.1%) were the three most common types of anemia in 142 anemic GPCA-BMS patients. CONCLUSION: GPCA+BMS patients have significantly higher frequencies of macrocytosis, blood Hb and serum vitamin B12 deficiencies, and hyperhomocysteinemia than healthy control subjects or GPCA-BMS patients.


Assuntos
Anemia , Síndrome da Ardência Bucal , Hematínicos , Hiper-Homocisteinemia , Síndrome da Ardência Bucal/epidemiologia , Ácido Fólico , Deficiência de Ácido Fólico/complicações , Deficiência de Ácido Fólico/epidemiologia , Glossite , Hemoglobinas/análise , Humanos , Hiper-Homocisteinemia/complicações , Hiper-Homocisteinemia/epidemiologia , Ferro , Células Parietais Gástricas , Vitamina B 12 , Deficiência de Vitamina B 12/complicações , Deficiência de Vitamina B 12/epidemiologia
19.
EMBO Rep ; 19(12)2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30420520

RESUMO

Sirtuins (SIRTs) are a class of lysine deacylases that regulate cellular metabolism and energy homeostasis. Although sirtuins have been proposed to function in nutrient sensing and signaling, the underlying mechanism remains elusive. SIRT7, a histone H3K18-specific deacetylase, epigenetically controls mitochondria biogenesis, ribosomal biosynthesis, and DNA repair. Here, we report that SIRT7 is methylated at arginine 388 (R388), which inhibits its H3K18 deacetylase activity. Protein arginine methyltransferase 6 (PRMT6) directly interacts with and methylates SIRT7 at R388 in vitro and in vivo R388 methylation suppresses the H3K18 deacetylase activity of SIRT7 without modulating its subcellular localization. PRMT6-induced H3K18 hyperacetylation at SIRT7-target gene promoter epigenetically promotes mitochondria biogenesis and maintains mitochondria respiration. Moreover, high glucose enhances R388 methylation in mouse fibroblasts and liver tissue. PRMT6 signals glucose availability to SIRT7 in an AMPK-dependent manner. AMPK induces R388 hypomethylation by disrupting the association between PRMT6 and SIRT7. Together, PRMT6-induced arginine methylation of SIRT7 coordinates glucose availability with mitochondria biogenesis to maintain energy homeostasis. Our study uncovers the regulatory role of SIRT7 arginine methylation in glucose sensing and mitochondria biogenesis.


Assuntos
Arginina/metabolismo , Glucose/metabolismo , Biogênese de Organelas , Sirtuínas/metabolismo , Adenilato Quinase/metabolismo , Sequência de Aminoácidos , Células HEK293 , Histonas/metabolismo , Humanos , Lisina/metabolismo , Metilação , Proteínas Nucleares/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Sirtuínas/química
20.
Proc Natl Acad Sci U S A ; 114(12): E2460-E2465, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28193863

RESUMO

A large number of genes are necessary for the biosynthesis and activity of the enzyme nitrogenase to carry out the process of biological nitrogen fixation (BNF), which requires large amounts of ATP and reducing power. The multiplicity of the genes involved, the oxygen sensitivity of nitrogenase, plus the demand for energy and reducing power, are thought to be major obstacles to engineering BNF into cereal crops. Genes required for nitrogen fixation can be considered as three functional modules encoding electron-transport components (ETCs), proteins required for metal cluster biosynthesis, and the "core" nitrogenase apoenzyme, respectively. Among these modules, the ETC is important for the supply of reducing power. In this work, we have used Escherichia coli as a chassis to study the compatibility between molybdenum and the iron-only nitrogenases with ETC modules from target plant organelles, including chloroplasts, root plastids, and mitochondria. We have replaced an ETC module present in diazotrophic bacteria with genes encoding ferredoxin-NADPH oxidoreductases (FNRs) and their cognate ferredoxin counterparts from plant organelles. We observe that the FNR-ferredoxin module from chloroplasts and root plastids can support the activities of both types of nitrogenase. In contrast, an analogous ETC module from mitochondria could not function in electron transfer to nitrogenase. However, this incompatibility could be overcome with hybrid modules comprising mitochondrial NADPH-dependent adrenodoxin oxidoreductase and the Anabaena ferredoxins FdxH or FdxB. We pinpoint endogenous ETCs from plant organelles as power supplies to support nitrogenase for future engineering of diazotrophy in cereal crops.


Assuntos
Escherichia coli/enzimologia , Eucariotos/enzimologia , Nitrogenase/metabolismo , Organelas/enzimologia , Anabaena/enzimologia , Anabaena/genética , Transporte de Elétrons , Escherichia coli/genética , Escherichia coli/metabolismo , Eucariotos/genética , Eucariotos/metabolismo , Ferredoxina-NADP Redutase/genética , Ferredoxina-NADP Redutase/metabolismo , Molibdênio/metabolismo , Nitrogenase/genética , Organelas/genética , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA