Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 25(8): 1432-1444, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38969872

RESUMO

Memory B cells (MBCs) differentiate into plasma cells (PCs) or germinal centers (GCs) upon antigen recall. How this decision is programmed is not understood. We found that the relative strength between two antagonistic transcription factors, B lymphocyte-induced maturation protein 1 (BLIMP1) and BTB domain and CNC homolog 2 (BACH2), progressively increases in favor of BLIMP1 in antigen-responding B cells through the course of primary responses. MBC subsets that preferentially produce secondary GCs expressed comparatively higher BACH2 but lower BLIMP1 than those predisposed for PC development. Skewing the BLIMP1-BACH2 balance in otherwise fate-predisposed MBC subsets could switch their fate preferences. Underlying the changing BLIMP1-over-BACH2 balance, we observed progressively increased accessibilities at chromatin loci that are specifically opened in PCs, particularly those that contain interferon-sensitive response elements (ISREs) and are controlled by interferon regulatory factor 4 (IRF4). IRF4 is upregulated by B cell receptor, CD40 or innate receptor signaling and it induces graded levels of PC-specifying epigenetic imprints according to the strength of stimulation. By analyzing history-stamped GC B cells, we found progressively increased chromatin accessibilities at PC-specific, IRF4-controlled gene loci over time. Therefore, the cumulative stimulation history of B cells is epigenetically recorded in an IRF4-dependent manner, determines the relative strength between BLIMP1 and BACH2 in individual MBCs and dictates their probabilities to develop into GCs or PCs upon restimulation.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Diferenciação Celular , Epigênese Genética , Centro Germinativo , Memória Imunológica , Fatores Reguladores de Interferon , Células B de Memória , Plasmócitos , Fator 1 de Ligação ao Domínio I Regulador Positivo , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Animais , Fatores Reguladores de Interferon/metabolismo , Fatores Reguladores de Interferon/genética , Camundongos , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Células B de Memória/imunologia , Células B de Memória/metabolismo , Plasmócitos/imunologia , Plasmócitos/metabolismo , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Camundongos Endogâmicos C57BL , Transdução de Sinais , Ativação Linfocitária/genética
2.
Immunity ; 57(8): 1848-1863.e7, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-38889716

RESUMO

Expression of the transcriptional regulator ZFP318 is induced in germinal center (GC)-exiting memory B cell precursors and memory B cells (MBCs). Using a conditional ZFP318 fluorescence reporter that also enables ablation of ZFP318-expressing cells, we found that ZFP318-expressing MBCs were highly enriched with GC-derived cells. Although ZFP318-expressing MBCs constituted only a minority of the antigen-specific MBC compartment, their ablation severely impaired recall responses. Deletion of Zfp318 did not alter the magnitude of primary responses but markedly reduced MBC participation in recall. CD40 ligation promoted Zfp318 expression, whereas B cell receptor (BCR) signaling was inhibitory. Enforced ZFP318 expression enhanced recall performance of MBCs that otherwise responded poorly. ZFP318-deficient MBCs expressed less mitochondrial genes, had structurally compromised mitochondria, and were susceptible to reactivation-induced cell death. The abundance of ZFP318-expressing MBCs, instead of the number of antigen-specific MBCs, correlated with the potency of prime-boost vaccination. Therefore, ZFP318 controls the MBC recallability and represents a quality checkpoint of humoral immune memory.


Assuntos
Centro Germinativo , Memória Imunológica , Células B de Memória , Mitocôndrias , Animais , Mitocôndrias/metabolismo , Mitocôndrias/imunologia , Camundongos , Memória Imunológica/genética , Memória Imunológica/imunologia , Células B de Memória/imunologia , Células B de Memória/metabolismo , Centro Germinativo/imunologia , Receptores de Antígenos de Linfócitos B/metabolismo , Receptores de Antígenos de Linfócitos B/genética , Regulação da Expressão Gênica , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Transdução de Sinais/imunologia , Antígenos CD40/metabolismo , Antígenos CD40/genética , Antígenos CD40/imunologia , Imunidade Humoral , Transcrição Gênica , Proteínas de Membrana , Proteínas Mitocondriais
3.
Nano Lett ; 24(14): 4241-4247, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38546270

RESUMO

Electrochemistry that empowers innovative nanoscopic analysis has long been pursued. Here, the concept of aggregation-enabled electrochemistry (AEE) in a confined nanopore is proposed and devised by reactive oxygen species (ROS)-responsive aggregation of CdS quantum dots (QDs) within a functional nanopipette. Complementary Faradaic and non-Faradaic operations of the CdS QDs aggregate could be conducted to simultaneously induce the signal-on of the photocurrents and the signal-off of the ionic signals. Such a rationale permits the cross-checking of the mutually corroborated signals and thus delivers more reliable results for single-cell ROS analysis. Combined with the rich biomatter-light interplay, the concept of AEE can be extended to other stimuli-responsive aggregations for electrochemical innovations.

4.
Immunology ; 172(3): 375-391, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38471664

RESUMO

Persistent human papillomavirus (HPV) infection is associated with multiple malignancies. Developing therapeutic vaccines to eliminate HPV-infected and malignant cells holds significant value. In this study, we introduced a lipid nanoparticle encapsulated mRNA vaccine expressing tHA-mE7-mE6. Mutations were introduced into E6 and E7 of HPV to eliminate their tumourigenicity. A truncated influenza haemagglutinin protein (tHA), which binds to the CD209 receptor on the surface of dendritic cells (DCs), was fused with mE7-mE6 in order to allow efficient uptake of antigen by antigen presenting cells. The tHA-mE7-mE6 (mRNA) showed higher therapeutic efficacy than mE7-mE6 (mRNA) in an E6 and E7+ tumour model. The treatment resulted in complete tumour regression and prevented tumour formation. Strong CD8+ T-cell immune response was induced, contributing to preventing and curing of E6 and E7+ tumour. Antigen-specific CD8+ T were found in spleens, peripheral blood and in tumours. In addition, the tumour infiltration of DC and NK cells were increased post therapy. In conclusion, this study described a therapeutic mRNA vaccine inducing strong anti-tumour immunity in peripheral and in tumour microenvironment, holding promising potential to treat HPV-induced cancer and to prevent cancer recurrence.


Assuntos
Vacinas Anticâncer , Células Dendríticas , Proteínas Oncogênicas Virais , Proteínas E7 de Papillomavirus , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Vacinas de mRNA , Animais , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/prevenção & controle , Proteínas E7 de Papillomavirus/imunologia , Vacinas Anticâncer/imunologia , Proteínas Oncogênicas Virais/imunologia , Proteínas Oncogênicas Virais/genética , Vacinas contra Papillomavirus/imunologia , Células Dendríticas/imunologia , Humanos , Camundongos , Feminino , Linfócitos T CD8-Positivos/imunologia , Camundongos Endogâmicos C57BL , Nanopartículas , Células Apresentadoras de Antígenos/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Células Matadoras Naturais/imunologia , Proteínas Repressoras/imunologia , Proteínas Repressoras/genética , Neoplasias/terapia , Neoplasias/imunologia , RNA Mensageiro/genética , Linhagem Celular Tumoral , Lipossomos
5.
J Am Chem Soc ; 146(2): 1305-1317, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38169369

RESUMO

Aprotic lithium-oxygen (Li-O2) batteries are considered to be a promising alternative option to lithium-ion batteries for high gravimetric energy storage devices. However, the sluggish electrochemical kinetics, the passivation, and the structural damage to the cathode caused by the solid discharge products have greatly hindered the practical application of Li-O2 batteries. Herein, the nonsolid-state discharge products of the off-stoichiometric Li1-xO2 in the electrolyte solutions are achieved by iridium (Ir) single-atom-based porous organic polymers (termed as Ir/AP-POP) as a homogeneous, soluble electrocatalyst for Li-O2 batteries. In particular, the numerous atomic active sites act as the main nucleation sites of O2-related discharge reactions, which are favorable to interacting with O2-/LiO2 intermediates in the electrolyte solutions, owing to the highly similar lattice-matching effect between the in situ-formed Ir3Li and LiO2, achieving a nonsolid LiO2 as the final discharge product in the electrolyte solutions for Li-O2 batteries. Consequently, the Li-O2 battery with a soluble Ir/AP-POP electrocatalyst exhibits an ultrahigh discharge capacity of 12.8 mAh, an ultralow overpotential of 0.03 V, and a long cyclic life of 700 h with the carbon cloth cathode. The manipulation of nonsolid discharge products in aprotic Li-O2 batteries breaks the traditional growth mode of Li2O2, bringing Li-O2 batteries closer to being a viable technology.

6.
J Am Chem Soc ; 146(2): 1681-1689, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38178655

RESUMO

The coupled relationship between carrier and phonon scattering severely limits the thermoelectric performance of n-type GeTe materials. Here, we provide an efficient strategy to enlarge grains and induce vacancy clusters for decoupling carrier-phonon scattering through the annealing optimization of n-type GeTe-based materials. Specifically, boundary migration is used to enlarge grains by optimizing the annealing time, while vacancy clusters are induced through the aggregation of Ge vacancies during annealing. Such enlarged grains can weaken carrier scattering, while vacancy clusters can strengthen phonon scattering, leading to decoupled carrier-phonon scattering. As a result, a ratio between carrier mobility and lattice thermal conductivity of ∼492.8 cm3 V-1 s-1 W-1 K and a peak ZT of ∼0.4 at 473 K are achieved in Ge0.67Pb0.13Bi0.2Te. This work reveals the critical roles of enlarged grains and induced vacancy clusters in decoupling carrier-phonon scattering and demonstrates the viability of fabricating high-performance n-type GeTe materials via annealing optimization.

7.
Small ; : e2403804, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38973112

RESUMO

In the pursuit of efficient singlet oxygen generation in Fenton-like catalysis, the utilization of single-atom catalysts (SACs) emerges as a highly desired strategy. Here, a discovery is reported that the single-atom Fe coordinated with five N-atoms on N-doped porous carbon, denoted as Fe-N5/NC, outperform its counterparts, those coordinated with four (Fe-N4/NC) or six N-atoms (Fe-N6/NC), as well as state-of-the-art SACs comprising other transition metals. Thus, Fe-N5/NC exhibits exceptional efficacy in activating peroxymonosulfate for the degradation of organic pollutants. The coordination number of N-atoms can be readily adjusted by pyrolysis of pre-assembly structures consisting of Fe3+ and various isomers of phenylenediamine. Fe-N5/NC displayed outstanding tolerance to environmental disturbances and minimal iron leaching when incorporated into a membrane reactor. A mechanistic study reveals that the axial ligand N reduces the contribution of Fe-3d orbitals in LUMO and increases the LUMO energy of Fe-N5/NC. This, in turn, reduces the oxophilicity of the Fe center, promoting the reactivity of *OO intermediate-a pivotal step for yielding singlet oxygen and the rate-determining step. These findings unveil the significance of manipulating the oxophilicity of metal atoms in single-atom catalysis and highlight the potential to augment Fenton-like catalysis performance using Fe-SACs.

8.
J Transl Med ; 22(1): 506, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802952

RESUMO

Cancer cachexia (CC) is a debilitating syndrome that affects 50-80% of cancer patients, varying in incidence by cancer type and significantly diminishing their quality of life. This multifactorial syndrome is characterized by muscle and fat loss, systemic inflammation, and metabolic imbalance. Extracellular vesicles (EVs), including exosomes and microvesicles, play a crucial role in the progression of CC. These vesicles, produced by cancer cells and others within the tumor environment, facilitate intercellular communication by transferring proteins, lipids, and nucleic acids. A comprehensive review of the literature from databases such as PubMed, Scopus, and Web of Science reveals insights into the formation, release, and uptake of EVs in CC, underscoring their potential as diagnostic and prognostic biomarkers. The review also explores therapeutic strategies targeting EVs, which include modifying their release and content, utilizing them for drug delivery, genetically altering their contents, and inhibiting key cachexia pathways. Understanding the role of EVs in CC opens new avenues for diagnostic and therapeutic approaches, potentially mitigating the syndrome's impact on patient survival and quality of life.


Assuntos
Caquexia , Vesículas Extracelulares , Neoplasias , Humanos , Caquexia/metabolismo , Caquexia/etiologia , Caquexia/terapia , Vesículas Extracelulares/metabolismo , Neoplasias/complicações , Neoplasias/patologia , Neoplasias/metabolismo , Animais
9.
Psychol Med ; : 1-10, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38362834

RESUMO

BACKGROUND: Major depressive disorder (MDD) is associated not only with disorders in multiple brain networks but also with frequency-specific brain activities. The abnormality of spatiotemporal networks in patients with MDD remains largely unclear. METHODS: We investigated the alterations of the global spatiotemporal network in MDD patients using a large-sample multicenter resting-state functional magnetic resonance imaging dataset. The spatiotemporal characteristics were measured by the variability of global signal (GS) and its correlation with local signals (GSCORR) at multiple frequency bands. The association between these indicators and clinical scores was further assessed. RESULTS: The GS fluctuations were reduced in patients with MDD across the full frequency range (0-0.1852 Hz). The GSCORR was also reduced in the MDD group, especially in the relatively higher frequency range (0.0728-0.1852 Hz). Interestingly, these indicators showed positive correlations with depressive scores in the MDD group and relative negative correlations in the control group. CONCLUSION: The GS and its spatiotemporal effects on local signals were weakened in patients with MDD, which may impair inter-regional synchronization and related functions. Patients with severe depression may use the compensatory mechanism to make up for the functional impairments.

10.
Langmuir ; 40(20): 10759-10768, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38712734

RESUMO

Bouncing dynamics of a trailing drop off-center impacting a leading drop with varying time intervals and Weber numbers are investigated experimentally. Whether the trailing drop impacts during the spreading or receding process of the leading drop is determined by the time interval. For a short time interval of 0.15 ≤ Δt* ≤ 0.66, the trailing drop impacts during the spreading of the leading drop, and the drops completely coalesce and rebound; for a large time interval of 0.66 < Δt* ≤ 2.21, the trailing drop impacts during the receding process, and the drops partially coalesce and rebound. Whether the trailing drop directly impacts the surface or the liquid film of the leading drop is determined by the Weber number. The trailing drop impacts the surface directly at moderate Weber numbers of 16.22 ≤ We ≤ 45.42, while it impacts the liquid film at large Weber numbers of 45.42 < We ≤ 64.88. Intriguingly, when the trailing drop impacts the surface directly or the receding liquid film, the contact time increases linearly with the time interval but independent of the Weber number; when the trailing drop impacts the spreading liquid film, the contact time suddenly increases, showing that the force of the liquid film of the leading drop inhibits the receding of the trailing drop. Finally, a theoretical model of the contact time for the drops is established, which is suitable for different impact scenarios of the successive off-center impact. This study provides a quantitative relationship to calculate the contact time of drops successively impacting a superhydrophobic surface, facilitating the design of anti-icing surfaces.

11.
J Org Chem ; 89(2): 928-938, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38181049

RESUMO

Chiral diarylmethylamides are a privileged skeleton in many bioactive molecules. However, the enantioselective synthesis of such molecules remains a long-standing challenge in organic synthesis. Herein, we report a chiral bifunctional squaramide catalyzed asymmetric aza-Michael addition of amides to in situ generated ortho-quinomethanes, affording enantioenriched diarylmethylamides in good yields with excellent enantioselectivities. This work not only provides a new strategy for the construction of the diarylmethylamides but also represents the practicability of amides as nitrogen-nucleophiles in asymmetric organocatalysis.

12.
J Org Chem ; 89(2): 975-985, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38181067

RESUMO

Enantioselective synthesis of eight-membered N-heterocycles represents a long-standing challenge in organic synthesis. Here, by combining the squaramide and DBU catalysis, a sequential asymmetric conjugate addition/cyclization reaction between benzofuran-derived azadienes and ynones has been well-developed, providing straightforward access to chiral eight-membered N-heterocycles in high yields with stereoselectivities. This protocol features the use of a bifunctional squaramide catalyst for controlling the enantioselectivity of products, while the DBU is utilized to achieve intramolecular cyclization and improve the diastereoselectivity of products.

13.
Blood Purif ; : 1-12, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38740012

RESUMO

BACKGROUND: Blood purification therapy for patients overloaded with metabolic toxins or drugs still needs improvement. Blood purification therapies, such as in hemodialysis or peritoneal dialysis can profit from a combined application with nanoparticles. SUMMARY: In this review, the published literature is analyzed with respect to nanomaterials that have been customized and functionalized as nano-adsorbents during blood purification therapy. Liposomes possess a distinct combined structure composed of a hydrophobic lipid bilayer and a hydrophilic core. The liposomes which have enzymes in their aqueous core or obtain specific surface modifications of the lipid bilayer can offer appreciated advantages. Preclinical and clinical experiments with such modified liposomes show that they are highly efficient and generally safe. They may serve as indirect and direct adsorption materials both in hemodialysis and peritoneal dialysis treatment for patients with renal or hepatic failure. Apart from dialysis, nanoparticles made of specially designed metal and activated carbon have also been utilized to enhance the removal of solutes during hemoadsorption. Results are a superior adsorption capacity and good hemocompatibility shown during the treatment of patients with toxication or end-stage renal disease. In summary, nanomaterials are promising tools for improving the treatment efficacy of organ failure or toxication. KEY MESSAGES: (i) The pH-transmembrane liposomes and enzyme-loaded liposomes are two representatives of liposomes with modified aqueous inner core which have been put into practice in dialysis. (ii) Unmodified or physiochemically modified liposomal bilayers are ideal binders for lipophilic protein-bound uremic toxins or cholestatic solutes, thus liposome-supported dialysis could become the next-generation hemodialysis treatment of artificial liver support system. (iii) Novel nano-based sorbents featuring large surface area, high adsorption capacity and decent biocompatibility have shown promise in the treatment of uremia, hyperbilirubinemia, intoxication, and sepsis. (vi) A major challenge of production lies in avoiding changes in physical and chemical properties induced by manufacturing and sterilizing procedures.

14.
Angew Chem Int Ed Engl ; : e202401910, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39034290

RESUMO

The lack of stable solid-state electrolytes (SSEs) with high-ionic conductivity and rational design of electrode/electrolyte interfaces remains challenging for solid-state lithium batteries. Here, for the first time, a high-performance solid-state lithium-oxygen battery is developed based on the Li-ion-conducted hydrogen-bonded organic framework (LHOF) electrolyte and the core-shell HOF-DAT@CNT cathode with a few layers of HOF-DAT on surface of carbon nanotubes. Benefiting from the abundant dynamic hydrogen bonding network in LHOF-DAT SSEs, fast Li+ ion transport (2.2 × 10-4 S cm-1), a high Li+ transfer number (0.88), and a wide electrochemical window of 5.05 V are achieved. Symmetric batteries constructed with LHOF-DAT SSEs exhibit a stably cycled duration of over 1400 h, which mainly stems from the jumping sites that promote a uniformly high rate of Li+ flux and the hydrogen-bonding network structure that can relieve the structural changes during Li+ transport. LHOF-DAT SSEs-based Li-O2 batteries exhibit high specific capacity (10335 mAh g-1), and stable cycling life up to 150 cycles. Moreover, the solid-state lithium metal battery with LHOF-DAT SSEs endow good rate capability (128.8 mAh g-1 at 1 C), long-term discharge/charge stability (210 cycles). The design of LHOF-DAT SSEs opens an avenue for the development of novel SSEs-based solid-state lithium batteries.

15.
Angew Chem Int Ed Engl ; 63(17): e202400132, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38409997

RESUMO

Li-CO2 batteries have received significant attention owing to their advantages of combining greenhouse gas utilization and energy storage. However, the high kinetic barrier between gaseous CO2 and the Li2CO3 product leads to a low operating voltage (<2.5 V) and poor energy efficiency. In addition, the reversibility of Li2CO3 has always been questioned owing to the introduction of more decomposition paths caused by its higher charging plateau. Here, a novel "trinity" Li-CO2 battery system was developed by synergizing CO2, soluble redox mediator (2,2,6,6-tetramethylpiperidoxyl, as TEM RM), and reduced graphene oxide electrode to enable selective conversion of CO2 to Li2C2O4. The designed Li-CO2 battery exhibited an output plateau reaching up to 2.97 V, higher than the equilibrium potential of 2.80 V for Li2CO3, and an ultrahigh round-trip efficiency of 97.1 %. The superior performance of Li-CO2 batteries is attributed to the TEM RM-mediated preferential growth mechanism of Li2C2O4, which enhances the reaction kinetics and rechargeability. Such a unique design enables batteries to cope with sudden CO2-deficient environments, which provides an avenue for the rationally design of CO2 conversion reactions and a feasible guide for next-generation Li-CO2 batteries.

16.
Angew Chem Int Ed Engl ; 63(25): e202405863, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38589298

RESUMO

Cascade radical cyclization constitutes an atom- and step-economic route for rapid assembly of polycyclic molecular skeletons. Although an array of redox-active metal catalysts has recently shown robust applications in enabling various catalytic cascade radical processes, the use of free organic radical as the catalyst, which is capable of triggering strategically distinct cascades, has rarely been developed. Here, we disclosed that the benzimidazolium-based N-heterocyclic carbene (NHC)-boryl radical is capable of catalyzing cascade cyclization reactions in both intra- and intermolecular pathways, assembling [5,5] fused bicyclic and [6,6,6] fused tricyclic molecules, respectively. The catalytic reactions start with the chemo- and regioselective addition of the boryl radical catalyst to a tethered alkene or alkyne moiety, followed by either an intramolecular formal [3+2] or an intermolecular [2+2+2] cycloaddition process to construct bicyclo[3.3.0]octane or tetrahydrophenanthridine skeletons, respectively. Eventually, a ß-elimination occurs to release the boryl radical catalyst, completing a catalytic cycle. High to excellent diastereoselectivity is achieved in both catalytic reactions under substrate control.

17.
Angew Chem Int Ed Engl ; : e202411845, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39031481

RESUMO

Chemically self-recharging zinc ion batteries (ZIBs), which are capable of auto-recharging in ambient air, are promising in self-powered battery systems. Nevertheless, the exclusive reliance on chemical energy from oxygen for ZIBs charging often would bring some obstacles in charging efficiency. Herein, we develop photo-assisted chemically self-recharging aqueous ZIBs with a heterojunction of MoS2/SnO2 cathode, which are favorable to enhancing both the charging and discharging efficiency as well as the chemical self-charging capabilities under illumination. The photo-assisted process promotes the electron transfer from MoS2/SnO2 to oxygen, accelerating the occurrence of the oxidation reaction during chemical self-charging. Furthermore, the electrons within the MoS2/SnO2 cathode exhibit a low transfer impedance under illumination, which is beneficial to reducing the migration barrier of Zn2+ within the cathode and thereby facilitating the uniform inserting of Zn2+ into MoS2/SnO2 cathode during discharging. This photo-assisted chemical self-recharging mechanism enables ZIBs to attain a maximum self-charging potential of 0.95 V within 3 hours, a considerable self-charging capacity of 202.5 mAh g-1 and excellent cycling performance in a self-charging mode. This work not only provides a route for optimizing chemical self-charging energy storage, but also broadens the potential application of aqueous ZIBs.

18.
PLoS One ; 19(6): e0305078, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38843158

RESUMO

The construction of enterprise digitization serves as a "gateway" for the integration of the digital and real economies. As enterprises undergo robust digital transformations, it becomes crucial to delineate the pathway from enterprise digitization level to value creation and realization in order to maximize enterprise value. We select sample data from Chinese A-share listed companies from 2015 to 2021 as the research subject. Based on the fixed-effects model, we empirically test the impact of enterprise digitization level on both value creation and realization, as well as the mediating mechanism of entrepreneurship and internal control within it. The results indicate that the enterprise digitization level significantly enhances both value creation and realization. However, significant differences exist in the impact of the digitization level on value creation and realization among enterprises with different technological attributes and at different stages of the lifecycle. Further mechanism tests demonstrate that the "breakthrough-based" entrepreneurship and "compliance-based" internal control quality play effective mediating roles between enterprise digitization level and enterprise value. This study provides a new perspective for understanding the value creation and realization process in the digital context, and offers relevant insights for further stimulating and guiding enterprises of different types and stages to drive value enhancement with digital capabilities, thereby facilitating the deep integration of the digital with the real economy.


Assuntos
Empreendedorismo , Humanos , China , Comércio
19.
MycoKeys ; 102: 201-224, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38449923

RESUMO

Chinese yew, Taxuschinensisvar.mairei is an endangered shrub native to south-eastern China and is widely known for its medicinal value. The increased cultivation of Chinese yew has increased the incidence of various fungal diseases. In this study, Pestalotioid fungi associated with needle spot of Chinese yew were isolated from Guangxi Province. Based on morphological examinations and multi-locus (ITS, tub2, tef-1α) phylogenies, these isolates were identified to five species, including two new species, Pestalotiopsistaxicola and P.multicolor, two potential novel Neopestalotiopsis species, Neopestalotiopsis sp. 3 and Neopestalotiopsis sp. 4, with a known Pestalotiopsis species (Pestalotiopsistrachycarpicola), firstly recorded from Chinese yew. These two new Pestalotiopsis species were morphologically and phylogenetically distinct from the extant Pestalotioid species in Chinese yew. Pathogenicity and culture characteristic tests of these five Pestalotioid species were also performed in this study. The pathogenicity test results revealed that Neopestalotiopsis sp. 3 can cause diseases in Chinese yew needles. These results have indicated that the diversity of Pestalotioid species associated with Chinese yew was greater than previously determined and provided helpful information for Chinese yew disease diagnosis and management.

20.
World J Gastrointest Oncol ; 16(4): 1154-1165, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38660633

RESUMO

Minimally invasive surgery is a kind of surgical operation, which is performed by using professional surgical instruments and equipment to inactivate, resect, repair or reconstruct the pathological changes, deformities and wounds in human body through micro-trauma or micro-approach, in order to achieve the goal of treatment, its surgical effect is equivalent to the traditional open surgery, while avoiding the morbidity of conventional surgical wounds. In addition, it also has the advantages of less trauma, less blood loss during operation, less psychological burden and quick recovery on patients, and these minimally invasive techniques provide unique value for the examination and treatment of gastric cancer patients. Surgical minimally invasive surgical techniques have developed rapidly and offer numerous options for the treatment of early gastric cancer (EGC): endoscopic mucosal resection (EMR), underwater EMR (UEMR), endoscopic submucosal dissection (ESD), endoscopic full-thickness resection (EFTR), endoscopic submucosal excavation (ESE), submucosal tunnel endoscopic resection), laparoscopic and endoscopic cooperative surgery (LECS); Among them, EMR, EFTR and LECS technologies have a wide range of applications and different modifications have been derived from their respective surgical operations, such as band-assisted EMR (BA-EMR), conventional EMR (CEMR), over-the-scope clip-assisted EFTR, no-touch EFTR, the inverted LECS, closed LECS, and so on. These new and improved minimally invasive surgeries are more precise, specific and effective in treating different types of EGC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA