Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 562
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Biochem ; 87: 1029-1060, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29709200

RESUMO

Over the past three decades, studies of ancient biomolecules-particularly ancient DNA, proteins, and lipids-have revolutionized our understanding of evolutionary history. Though initially fraught with many challenges, today the field stands on firm foundations. Researchers now successfully retrieve nucleotide and amino acid sequences, as well as lipid signatures, from progressively older samples, originating from geographic areas and depositional environments that, until recently, were regarded as hostile to long-term preservation of biomolecules. Sampling frequencies and the spatial and temporal scope of studies have also increased markedly, and with them the size and quality of the data sets generated. This progress has been made possible by continuous technical innovations in analytical methods, enhanced criteria for the selection of ancient samples, integrated experimental methods, and advanced computational approaches. Here, we discuss the history and current state of ancient biomolecule research, its applications to evolutionary inference, and future directions for this young and exciting field.


Assuntos
DNA Antigo , Evolução Molecular , Animais , Evolução Biológica , Extinção Biológica , Fósseis , Genômica , Humanos , Lipídeos/genética , Paleontologia , Filogenia , Proteínas/genética , Proteômica
2.
Nature ; 612(7939): 283-291, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36477129

RESUMO

Late Pliocene and Early Pleistocene epochs 3.6 to 0.8 million years ago1 had climates resembling those forecasted under future warming2. Palaeoclimatic records show strong polar amplification with mean annual temperatures of 11-19 °C above contemporary values3,4. The biological communities inhabiting the Arctic during this time remain poorly known because fossils are rare5. Here we report an ancient environmental DNA6 (eDNA) record describing the rich plant and animal assemblages of the Kap København Formation in North Greenland, dated to around two million years ago. The record shows an open boreal forest ecosystem with mixed vegetation of poplar, birch and thuja trees, as well as a variety of Arctic and boreal shrubs and herbs, many of which had not previously been detected at the site from macrofossil and pollen records. The DNA record confirms the presence of hare and mitochondrial DNA from animals including mastodons, reindeer, rodents and geese, all ancestral to their present-day and late Pleistocene relatives. The presence of marine species including horseshoe crab and green algae support a warmer climate than today. The reconstructed ecosystem has no modern analogue. The survival of such ancient eDNA probably relates to its binding to mineral surfaces. Our findings open new areas of genetic research, demonstrating that it is possible to track the ecology and evolution of biological communities from two million years ago using ancient eDNA.


Assuntos
DNA Ambiental , Ecossistema , Ecologia , Fósseis , Groenlândia
3.
Nature ; 600(7887): 86-92, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34671161

RESUMO

During the last glacial-interglacial cycle, Arctic biotas experienced substantial climatic changes, yet the nature, extent and rate of their responses are not fully understood1-8. Here we report a large-scale environmental DNA metagenomic study of ancient plant and mammal communities, analysing 535 permafrost and lake sediment samples from across the Arctic spanning the past 50,000 years. Furthermore, we present 1,541 contemporary plant genome assemblies that were generated as reference sequences. Our study provides several insights into the long-term dynamics of the Arctic biota at the circumpolar and regional scales. Our key findings include: (1) a relatively homogeneous steppe-tundra flora dominated the Arctic during the Last Glacial Maximum, followed by regional divergence of vegetation during the Holocene epoch; (2) certain grazing animals consistently co-occurred in space and time; (3) humans appear to have been a minor factor in driving animal distributions; (4) higher effective precipitation, as well as an increase in the proportion of wetland plants, show negative effects on animal diversity; (5) the persistence of the steppe-tundra vegetation in northern Siberia enabled the late survival of several now-extinct megafauna species, including the woolly mammoth until 3.9 ± 0.2 thousand years ago (ka) and the woolly rhinoceros until 9.8 ± 0.2 ka; and (6) phylogenetic analysis of mammoth environmental DNA reveals a previously unsampled mitochondrial lineage. Our findings highlight the power of ancient environmental metagenomics analyses to advance understanding of population histories and long-term ecological dynamics.


Assuntos
Biota , DNA Antigo/análise , DNA Ambiental/análise , Metagenômica , Animais , Regiões Árticas , Mudança Climática/história , Bases de Dados Genéticas , Conjuntos de Dados como Assunto , Extinção Biológica , Sedimentos Geológicos , Pradaria , Groenlândia , Haplótipos/genética , Herbivoria/genética , História Antiga , Humanos , Lagos , Mamutes , Mitocôndrias/genética , Perissodáctilos , Pergelissolo , Filogenia , Plantas/genética , Dinâmica Populacional , Chuva , Sibéria , Análise Espaço-Temporal , Áreas Alagadas
4.
J Virol ; 98(1): e0167023, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38088561

RESUMO

Lactate, traditionally considered a metabolic by-product, has recently been identified as a substrate for the induction of lactylation, a newly identified epigenetic modification that plays an important role in the regulation of host gene expression. Our previous study showed that lactate levels were significantly elevated in cells infected with the porcine reproductive and respiratory syndrome virus (PRRSV), an Arterivirus that has devastated the swine industry worldwide for over 30 years. However, the role of elevated lactate in PRRSV infections remains unknown. In this study, we found that lactate was required for optimal PRRSV proliferation, and PRRSV infection increased cellular lactylation in a dose-dependent manner. Using the Cleavage Under Targets and Tagmentation (CUT&Tag) combined with RNA sequencing (RNA-seq) to screen the downstream genes regulated by lactylation in PRRSV-infected cells, we found that PRRSV-induced lactylation activated the expression of heat shock 70 kDa protein 6 (HSPA6). Follow-up experiments showed that HSPA6 is important for PRRSV proliferation by negatively modulating interferon (IFN)-ß induction. Mechanistically, HSPA6 impeded the interaction between TNF-receptor-associated factor 3 (TRAF3) and inhibitor of nuclear factor kappa-B kinase subunit epsilon (IKKε), thereby hindering the production of IFN-ß. Taken together, these results indicate that the activated lactate-lactylation-HSPA6 axis promotes viral growth by impairing IFN-ß induction, providing new therapeutic targets for the prevention and control of PRRSV infection. The results presented here also link lactylation to the virus life cycle, improving our understanding of epigenetic regulation in viral infection.IMPORTANCEAs a newly identified epigenetic modification, lactate-induced lactylation has received attentions because it plays important roles in gene expression and contributes to tumorigenesis and the innate immune response. Previous studies showed that many viruses upregulate cellular lactate levels; however, whether virus-elevated lactate induces lactylation and the subsequent biological significance of the modification to viral infection have not been reported. In this study, we demonstrated that porcine reproductive and respiratory syndrome virus (PRRSV) infection induced cellular lactylation, which, in turn, upregulated the expression of HSPA6, an IFN-negative regulator. We also dissected the mechanism by which HSPA6 negatively regulates IFN-ß production. To our knowledge, this is the first report to study virus-induced lactylation and establish the relationship between lactylation and virus infection.


Assuntos
Ácido Láctico , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Epigênese Genética , Expressão Gênica , Ácido Láctico/metabolismo , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Suínos , Replicação Viral
5.
Plant Physiol ; 195(3): 2354-2371, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38501602

RESUMO

Teosinte branched 1/Cycloidea/Proliferating cell factor (TCP) transcription factors function in abiotic stress responses. However, how TCPs confer salt tolerance is unclear. Here, we characterized a TCP transcription factor, BpTCP20, that responds to salt stress in birch (Betula platyphylla Suk). Plants overexpressing BpTCP20 displayed increased salt tolerance, and Bptcp20 knockout mutants displayed reduced salt tolerance relative to the wild-type (WT) birch. BpTCP20 conferred salt tolerance by mediating stomatal closure and reducing reactive oxygen species (ROS) accumulation. Chromatin immunoprecipitation sequencing showed that BpTCP20 binds to NeuroD1, T-box, and two unknown elements (termed TBS1 and TBS2) to regulate target genes. In birch, salt stress led to acetylation of BpTCP20 acetylation at lysine 259. A mutated BpTCP20 variant (abolished for acetylation, termed BpTCP20259) was overexpressed in birch, which led to decreased salt tolerance compared with plants overexpressing BpTCP20. However, BpTCP20259-overexpressing plants still displayed increased salt tolerance relative to untransformed WT plants. BpTCP20259 showed reduced binding to the promoters of target genes and decreased target gene activation, leading to decreased salt tolerance. In addition, we identified dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex (BpPDCE23), an acetyltransferase that interacts with and acetylates BpTCP20 to enhance its binding to DNA motifs. Together, these results suggest that BpTCP20 is a transcriptional regulator of salt tolerance, whose activity is modulated by BpPDCE23-mediated acetylation.


Assuntos
Betula , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Tolerância ao Sal , Fatores de Transcrição , Tolerância ao Sal/genética , Acetilação , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Betula/genética , Betula/metabolismo , Betula/fisiologia , Acetiltransferases/metabolismo , Acetiltransferases/genética , Plantas Geneticamente Modificadas , Espécies Reativas de Oxigênio/metabolismo
6.
Nano Lett ; 24(26): 8162-8170, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38904300

RESUMO

Developing efficient and CO-tolerant platinum (Pt)-based anodic catalysts is challenging for a direct formic acid fuel cell (DFAFC). Herein, we report heterostructured Pt-lead-sulfur (PtPbS)-based nanomaterials with gradual phase regulation as efficient formic acid oxidation reaction (FAOR) catalysts. The optimized Pt-PbS nanobelts (Pt-PbS NBs/C) display the mass and specific activities of 5.90 A mgPt-1 and 21.4 mA cm-2, 2.2/1.2, 1.5/1.1, and 36.9/79.3 times greater than those of PtPb-PbS NBs/C, Pt-PbSO4 NBs/C, and commercial Pt/C, respectively. Simultaneously, it exhibits a higher membrane electrode assembly (MEA) power density (183.5 mW cm-2) than commercial Pt/C (40.3 mW cm-2). This MEA stably operates at 0.4 V for 25 h, demonstrating a competitive potential of device application. The distinctive heterostructure endows the Pt-PbS NBs/C with optimized dehydrogenation steps and resisting the CO poisoning, thus presenting the remarkable FAOR performance. This work paves an effective avenue for creating high-performance anodic catalysts for fuel cells and beyond.

7.
J Am Chem Soc ; 146(1): 1174-1184, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38153040

RESUMO

Controlling multimetallic ensembles at the atomic level is significantly challenging, particularly for high-entropy alloys with more than five elements. Herein, we report an innovative ultrasmall (∼2 nm) PtFeCoNiCuZn high-entropy intermetallic (PFCNCZ-HEI) with a well-ordered structure synthesized by using the space-confined strategy. By exploiting these combined metals, the PFCNCZ-HEI nanoparticles achieve an ultrahigh mass activity of 2.403 A mgPt-1 at 0.90 V vs reversible hydrogen electrode for the oxygen reduction reaction, which is up to 19-fold higher than that of state-of-the-art commercial Pt/C. A proton exchange membrane fuel cell assembled with PFCNCZ-HEI as the cathode (0.03 mgPt cm-2) exhibits a power density of 1.4 W cm-2 and a high mass-normalized rated power of 45 W mgPt-1. Furthermore, theoretical calculations reveal that the outer electrons of the non-noble-metal atoms on the surface of the PFCNCZ-HEI nanoparticle are modulated to show characteristics of multiple active centers. This work offers a promising catalyst design direction for developing highly ordered HEI nanoparticles for electrocatalysis.

8.
Biochem Biophys Res Commun ; 724: 150221, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38865811

RESUMO

MYB is a key regulator of hematopoiesis and erythropoiesis, and dysregulation of MYB is closely involved in the development of leukemia, however the mechanism of MYB regulation remains still unclear so far. Our previous study identified a long noncoding RNA (lncRNA) derived from the -34 kb enhancer of the MYB locus, which can promote MYB expression, the proliferation and migration of human leukemia cells, and is therefore termed MY34UE-AS. Then the interacting partner proteins of MY34UE-AS were identified and studied in the present study. hnRNPA0 was identified as a binding partner of MY34UE-AS through RNA pulldown assay, which was further validated through RNA immunoprecipitation (RIP). hnRNPA0 interacted with MY34UE-AS mainly through its RRM2 domain. hnRNPA0 overexpression upregulated MYB and increased the proliferation and migration of K562 cells, whereas hnRNPA0 knockdown showed opposite effects. Rescue experiments showed MY34UE-AS was required for above mentioned functions of hnRNPA0. These results reveal that hnRNPA0 is involved in leukemia through upregulating MYB expression by interacting with MY34UE-AS, suggesting that the hnRNPA0/MY34UE-AS axis could serve as a potential target for leukemia treatment.


Assuntos
Proliferação de Células , Leucemia , Proteínas Proto-Oncogênicas c-myb , RNA Longo não Codificante , Humanos , Linhagem Celular Tumoral , Movimento Celular/genética , Elementos Facilitadores Genéticos , Regulação Leucêmica da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Células K562 , Leucemia/genética , Leucemia/metabolismo , Leucemia/patologia , Ligação Proteica , Proteínas Proto-Oncogênicas c-myb/metabolismo , Proteínas Proto-Oncogênicas c-myb/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
9.
Small ; 20(17): e2308470, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38105598

RESUMO

Two-photon excited fluorescence imaging requires high-performance two-photon absorption (TPA) active materials, which are commonly intramolecular charge transfer systems prepared by traditional chemical synthesis. However, this typically needs harsh conditions and new methods are becoming crucial. In this work, based on a collaborative intermolecular charge transfer (inter-CT) strategy, three centimeter-sized organic TPA cocrystals are successfully obtained. All three cocrystals exhibit a mixed stacking arrangement, which can effectively generate inter-CT between the donor and acceptor. The ground and excited state characterizations compare their inter-CT ability: 1,2-BTC > 2D-BTC > 1D-BTC. Transient absorption spectroscopy detects TCNB•-, indicating that the TPA mechanism arises from molecular polarization caused by inter-CT. Meanwhile, 1,2-BTC exhibits the highest excited-state absorption and the longest excited-state lifetime, suggesting a stronger TPA response. First-principles calculations also confirm the presence of inter-CT interactions, and the significant parameter Δµ which can assess the TPA capability indicates that inter-CT enhances the TPA response. Besides, cocrystals also demonstrate excellent water solubility and two-photon excited fluorescence imaging capabilities. This research not only provides an effective method for synthesizing TPA crystal materials and elucidates the connection between inter-CT ability and TPA property but also successfully applies them in the fields of multi-photon fluorescence bioimaging.

10.
Small ; : e2311630, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470212

RESUMO

The floating gate devices, as a kind of nonvolatile memory, obtain great application potential in logic-in-memory chips. The 2D materials have been greatly studied due to atomically flat surfaces, higher carrier mobility, and excellent photoelectrical response. The 2D ReS2 flake is an excellent candidate for channel materials due to thickness-independent direct bandgap and outstanding optoelectronic response. In this paper, the floating gate devices are prepared with the ReS2 /h-BN/Gr heterojunction. It obtains superior nonvolatile electrical memory characteristics, including a higher memory window ratio (81.82%), tiny writing/erasing voltage (±8 V/2 ms), long retention (>1000 s), and stable endurance (>1000 times) as well as multiple memory states. Meanwhile, electrical writing and optical erasing are achieved by applying electrical and optical pulses, and multilevel storage can easily be achieved by regulating light pulse parameters. Finally, due to the ideal long-time potentiation/depression synaptic weights regulated by light pulses and electrical pulses, the convolutional neural network (CNN) constructed by ReS2 /h-BN/Gr floating gate devices can achieve image recognition with an accuracy of up to 98.15% for MNIST dataset and 91.24% for Fashion-MNIST dataset. The research work adds a powerful option for 2D materials floating gate devices to apply to logic-in-memory chips and neuromorphic computing.

11.
Fungal Genet Biol ; 172: 103889, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38513939

RESUMO

Trichoderma is an excellent biocontrol agent, but most Trichoderma genomes remained at the scaffold level, which greatly limits the research of biocontrol mechanism. Here, we reported the chromosome-level genome of Trichoderma harzianum CGMCC20739 (Tha739), T. asperellum CGMCC11653 (Tas653) and T. atroviride CGMCC40488 (Tat488), they were assembled into 7 chromosomes, genome size were 40 Mb (10,611 genes), 37.3 Mb (10,102 genes) and 36.3 Mb (9,896 genes), respectively. The positive selected genes of three strains were associated to response to stimulus, signaling transduction, immune system and localization. Furthermore, the number of transcription factors in Tha739, Tas653 and Tat488 strains had significant difference, which may contribute to the differential biocontrol function and stress tolerance. The genes related to signal transduction and gene clusters related to antimicrobial compounds in Tha739 were more than those in Tas653 and Tat488, which showed Tha739 may keenly sense other fungi and quickly secret antimicrobial compounds to inhibit other fungi. Tha739 also contained more genes associated to detoxification, antioxidant and nutrition utilization, indicating it had higher stress-tolerance to hostile environments. And the substrate for synthesizing IAA in Tha739 was mainly 3-indole acetonitrile and indole acetaldehyde, but in Tat488, it was indole-3-acetamide, moreover, Tha739 secreted more phosphatase and phytase and was more related to soil phosphorus metabolism, Tat488 secreted more urease and was more related to soil nitrogen metabolism. These candidate genes related to biocontrol function and stress-tolerance laid foundations for construction of functional strains. All above proved the difference in biocontrol function of Tha739, Tas653 and Tat488 strains, however, the defects in individual strains could be compensated for through Trichoderma-biome during the commercial application process of biocontrol Trichoderma strains.


Assuntos
Genoma Fúngico , Trichoderma , Genoma Fúngico/genética , Trichoderma/genética , Fatores de Transcrição/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Família Multigênica/genética , Hypocreales/genética
12.
Plant Biotechnol J ; 22(1): 48-65, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37697445

RESUMO

Long noncoding RNAs (lncRNAs) play an important role in abiotic stress tolerance. However, their function in conferring abiotic stress tolerance is still unclear. Herein, we characterized the function of a salt-responsive nuclear lncRNA (BplncSIR1) from Betula platyphylla (birch). Birch plants overexpressing and knocking out for BplncSIR1 were generated. BplncSIR1 was found to improve salt tolerance by inducing antioxidant activity and stomatal closure, and also accelerate plant growth. Chromatin isolation by RNA purification (ChIRP) combined with RNA sequencing indicated that BplncSIR1 binds to the promoter of BpNAC2 (encoding NAC domain-containing protein 2) to activate its expression. Plants overexpressing and knocking out for BpNAC2 were generated. Consistent with that of BplncSIR1, overexpression of BpNAC2 also accelerated plant growth and conferred salt tolerance. In addition, BpNAC2 binds to different cis-acting elements, such as G-box and 'CCAAT' sequences, to regulate the genes involved in salt tolerance, resulting in reduced ROS accumulation and decreased water loss rate by stomatal closure. Taken together, BplncSIR1 serves as the regulator of BpNAC2 to induce its expression in response to salt stress, and activated BpNAC2 accelerates plant growth and improves salt tolerance. Therefore, BplncSIR1 might be a candidate gene for molecular breeding to cultivate plants with both a high growth rate and improved salt tolerance.


Assuntos
RNA Longo não Codificante , Tolerância ao Sal , Tolerância ao Sal/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Betula/genética , Betula/metabolismo , Estresse Fisiológico/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Regulação da Expressão Gênica de Plantas/genética
13.
Plant Physiol ; 191(3): 1505-1519, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36305686

RESUMO

DNA-protein interaction is one of the most crucial interactions in biological processes. However, the technologies available to study DNA-protein interactions are all based on DNA hybridization; however, DNA hybridization is not highly specific and is relatively low in efficiency. RNA-guided DNA recognition is highly specific and efficient. To overcome the limitations of technologies based on DNA hybridization, we built a DNA-binding protein capture technology based on the clustered regularly interspaced palindromic repeats (CRISPR)-dead Cas9 (dCas9) system and transient genetic transformation, termed reverse chromatin immunoprecipitation based on CRISPR-dCas9 system (R-ChIP-dCas9). In this system, dCas9 was fused with Strep-Tag II to form a fusion protein for StrepTactin affinity purification. Transient transformation was performed for the expression of dCas9 and guide RNA (gRNA) to form the dCas9-gRNA complex in birch (Betula platyphylla) plants, which binds to the target genomic DNA region. The dCas9-gRNA-DNA complex was crosslinked, then the chromatin was sonicated into fragments, and purified using StrepTactin beads. The proteins binding to the target genomic DNA region were identified using mass spectrometry. Using this method, we determined the upstream regulators of a NAM, ATAF, and CUC (NAC) transcription factor (TF), BpNAC090, and 32 TFs potentially regulating BpNAC090 were identified. The reliability of R-ChIP-dCas9 was further confirmed by chromatin immunoprecipitation, electrophoretic mobility shift assays, and yeast one-hybrid. This technology can be adapted to various plant species and does not depend on the availability of a stable transformation system; therefore, it has wide application in identifying proteins bound to genomic DNA.


Assuntos
DNA , Plantas , Reprodutibilidade dos Testes , Imunoprecipitação da Cromatina/métodos , RNA , Sistemas CRISPR-Cas/genética
14.
Phys Rev Lett ; 132(21): 216301, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38856294

RESUMO

A mobility edge (ME), representing the critical energy that distinguishes between extended and localized states, is a key concept in understanding the transition between extended (metallic) and localized (insulating) states in disordered and quasiperiodic systems. Here we explore the impact of dissipation on a quasiperiodic system featuring MEs by calculating steady-state density matrix and analyzing quench dynamics with sudden introduction of dissipation. We demonstrate that dissipation can lead the system into specific states predominantly characterized by either extended or localized states, irrespective of the initial state. Our results establish the use of dissipation as a new avenue for inducing transitions between extended and localized states and for manipulating dynamic behaviors of particles.

15.
Artigo em Inglês | MEDLINE | ID: mdl-38373839

RESUMO

BACKGROUND: IgA vasculitis nephritis is the most common secondary IgA nephropathy. Urinary C4d have been identified associated with the development and progression in primary IgA nephropathy. However, its role in kidney disease progression of IgA vasculitis nephritis is still unclear. METHODS: This study enrolled 139 patients with IgA vasculitis nephritis (IgAVN), 18 healthy subjects, 23 Focal segmental glomerulosclerosis patients and 38 IgA nephropathy (IgAN) patients. Urinary C4d levels at kidney biopsy were measured using enzyme-linked immunosorbent assay. The association between urinary C4d/creatinine and kidney disease progression event, defined as 40% eGFR decline or ESKD, was assessed using Cox proportional hazards models and restricted cubic splines. RESULTS: The levels of urinary C4d/creatinine in IgAVN and IgAN patients were higher than in healthy controls. Higher levels of urinary C4d/creatinine were associated with higher proteinuria and severe Oxford C lesions and glomerular C4d deposition. After a median follow-up of 52.79 months, 18 (12.95%) participants reached composite kidney disease progression event. The risk of kidney disease progression event was higher with higher levels of ln (urinary C4d/creatinine). After adjustment for clinical data, higher levels of urinary C4d/creatinine were associated with kidney disease progression in IgA vasculitis nephritis (per ln transformed urinary C4d/creatinine, hazard ratio (HR) =1.573, 95% confidence interval (CI) 1.101-2.245; P = 0.013). Compared to the lower C4d/creatinine group, hazard ratio was 5.539(95%CI, 1.135-27.035; P = 0.034) for the higher levels group. CONCLUSIONS: Higher levels of urinary C4d/creatinine were associated with kidney disease progression event in patients IgAVN.

16.
Bioorg Med Chem Lett ; 101: 129651, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38342391

RESUMO

A novel kind of potent HIV-1 protease inhibitors, containing diverse hydroxyphenylacetic acids as the P2-ligands and 4-substituted phenyl sulfonamides as the P2' ligands, were designed, synthesized and evaluated in this work. Majority of the target compounds exhibited good to excellent activity against HIV-1 protease with IC50 values below 200 nM. In particular, compound 18d with a 2-(3,4-dihydroxyphenyl) acetamide as the P2 ligand and a 4- methoxybenzene sulfonamide P2' ligand exhibited inhibitory activity IC50 value of 0.54 nM, which was better than that of the positive control darunavir (DRV). More importantly, no significant decline of the potency against HIV-1DRVRS (DRV-resistant mutation) and HIV-1NL4_3 variant (wild type) for 18d was detected. The molecular docking study of 18d with HIV-1 protease (PDB-ID: 1T3R, www.rcsb.org) revealed possible binding mode with the HIV-1 protease. These results suggested the validity of introducing phenol-derived moieties into the P2 ligand and deserve further optimization which was of great value for future discovery of novel HIV-1 protease.


Assuntos
Benzenoacetamidas , Inibidores da Protease de HIV , HIV-1 , Darunavir/metabolismo , Darunavir/farmacologia , HIV-1/genética , Simulação de Acoplamento Molecular , Ligantes , Protease de HIV/metabolismo , Sulfonamidas/química , Desenho de Fármacos , Cristalografia por Raios X , Relação Estrutura-Atividade
17.
J Chem Phys ; 160(21)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38832737

RESUMO

High voltage power capacitors employ the oil-impregnated polypropylene film as the insulation. The swelling phenomenon might drive the antioxidants and small molecules within the film to migrate into the oil. It is necessary to comprehensively investigate the physical migration mechanism of antioxidants and their impact on the electrical performance of the oil-film combination insulation system and, consequently, formulate the proper selective prescription of antioxidants. Theoretical elucidation of the competitive interaction mechanism between the film and the oil in attracting antioxidant molecules was achieved through the calculation of inter-molecular binding energy, and the migration coefficient ηm was introduced to quantify the migration characteristics of antioxidants. Experimentally, the effects of antioxidants on the space charge distribution of the film, the dielectric properties of the oil, and the breakdown characteristics of both the film and oil were investigated. The experimental conclusions are consistent with theoretical analysis. The lamellar structure antioxidant molecules with ηm > 1 tend to migrate from the film to the oil, which results in increased dielectric loss and decreased breakdown strength of the insulating oil. In addition, the presence of phosphorus atoms in phosphite antioxidants contributes to a reduction in the breakdown strength of the film. For capacitor grade polypropylene film, in addition to the synergistic effect between different types of antioxidants on the thermo-oxidative stability, the structure of the antioxidant molecules and its influence on the electrical performance of the oil-film systems should also be taken into account.

18.
Neurosurg Rev ; 47(1): 320, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39002049

RESUMO

OBJECTIVE: Secretoneurin may play a brain-protective role. We aim to discover the relationship between serum secretoneurin levels and severity plus neurological outcome after intracerebral hemorrhage (ICH). METHODS: In this prospective cohort study, serum secretoneurin levels were measured in 110 ICH patients and 110 healthy controls. Glasgow Coma Scale (GCS) and hematoma volume were used to assess stroke severity. Poor prognosis was defined as Glasgow Outcome Scale (GOS) scores of 1-3 at 90 days after ICH. A multivariate logistic regression model was constructed to determine independent correlation of serum secretoneurin levels with severity and poor prognosis. Under receiver operating characteristic (ROC) curve, prognostic ability of serum secretoneurin levels was assessed. Restricted cubic spline (RCS) model and subgroups analysis were used for discovering association of serum secretoneurin levels with risk of poor prognosis. Calibration curve and decision curve were evaluated to confirm performance of nomogram. RESULTS: Serum secretoneurin levels of patients were significantly higher than those of healthy controls. Serum secretoneurin levels of patients were independently correlated with GCS scores and hematoma volume. There were 42 patients with poor prognosis at 90 days following ICH. Serum secretoneurin levels were significantly higher in patients with poor outcome than in those with good outcome. Under the ROC curve, serum secretoneurin levels significantly differentiated poor outcome. Serum secretoneurin levels ≥ 22.8 ng/mL distinguished patients at risk of poor prognosis at 90 days with a sensitivity of 66.2% and a specificity of 81.0%. Besides, serum secretoneurin levels independently predicted a 90-day poor prognosis. Subgroup analysis showed that serum secretoneurin levels had non-significant interactions with other variables. The nomogram, including independent prognostic predictors, showed reliable prognosis capability using calibration curve and decision curve. Area under the curve of the predictive model was significantly higher than those of GCS scores and hematoma volume. CONCLUSION: Serum secretoneurin levels are strongly related to ICH severity and poor prognosis at 90 days after ICH. Thus, serum secretoneurin may be a promising prognostic biomarker in ICH.


Assuntos
Biomarcadores , Hemorragia Cerebral , Humanos , Masculino , Hemorragia Cerebral/sangue , Hemorragia Cerebral/diagnóstico , Feminino , Pessoa de Meia-Idade , Prognóstico , Idoso , Biomarcadores/sangue , Estudos Prospectivos , Neuropeptídeos/sangue , Secretogranina II/sangue , Escala de Coma de Glasgow , Estudos de Coortes , Adulto , Curva ROC , Escala de Resultado de Glasgow
19.
Bull Entomol Res ; 114(2): 230-236, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38475984

RESUMO

As an environmental factor, temperature impacts the distribution of species and influences interspecific competition. The molecular chaperones encoded by small heat shock proteins (sHsps) are essential for rapid, appropriate responses to environmental stress. This study focuses on Hsp20.8, which encodes a temperature-responsive sHsp in Liriomyza trifolii, an insect pest that infests both agricultural and ornamental crops. Hsp20.8 expression was highest at 39℃ in L. trifolii pupae and adults, and expression levels were greater in pupae than in adults. Recombinant Hsp20.8 was expressed in Escherichia coli and conferred a higher survival rate than the empty vector to bacterial cells exposed to heat stress. RNA interference experiments were conducted using L. trifolii adults and prepupae and the knockdown of Hsp20.8 expression increased mortality in L. trifolii during heat stress. The results expand our understanding of sHsp function in Liriomyza spp. and the ongoing adaptation of this pest to climate change. In addition, this study is also important for predicting the distribution of invasive species and proposing new prevention and control strategies based on temperature adaptation.


Assuntos
Dípteros , Proteínas de Insetos , Animais , Dípteros/genética , Dípteros/fisiologia , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Temperatura Alta , Termotolerância , Pupa/crescimento & desenvolvimento , Pupa/genética , Pupa/metabolismo , Proteínas de Choque Térmico Pequenas/metabolismo , Proteínas de Choque Térmico Pequenas/genética , Interferência de RNA
20.
Ecotoxicol Environ Saf ; 279: 116482, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38772142

RESUMO

Heavy metals and per- and polyfluoroalkyl substances (PFASs) have become particularly important when studying the development of depression, a common illness that severely restricts psychosocial functioning and diminishes quality of life. Therefore, the potential joint effects of heavy metal and PFAS exposure on depression, as well as the underlying mechanisms involved, were investigated by using integrated epidemiological and bioinformatic approaches in the present study. A thorough analysis of 7301 samples from the National Health and Nutrition Examination Survey (NHANES) cycles that occurred between 2005 and 2018 was performed. Single-exposure studies have shown that cadmium exposure is positively associated with depression, whereas perfluorooctanesulfonic acid (PFOS) exposure and perfluorodecanoic acid (PFDE) exposure are negatively associated with depression. Furthermore, the Bayesian kernel machine regression (BKMR) and quantile g-computation (QGcomp) models were employed to investigate the collective impact of exposure to mixed metals on depression. Cadmium emerged as the principal contributor to depression. Moreover, the addition of PFAS to the metal mixture had an antagonistic effect on depression, with PFOS having the most prominent influence. Analysis of the effects of co-exposure to cadmium and PFOS confirmed the presence of an antagonistic effect. The inflection points of cadmium and PFOS were determined to be -1.11 and 2.27, respectively. Additionally, exposure to cadmium and PFOS had the opposite effects on two crucial pathways, namely, the rap1 and calcium signaling pathways, which involve core genes related to depression such as ADORA2A, FGF2, and FGFR1. These findings have significant implications for future studies and provide new strategies for exploring the mechanisms underlying co-exposure effects.


Assuntos
Ácidos Alcanossulfônicos , Biologia Computacional , Depressão , Poluentes Ambientais , Fluorocarbonos , Metais Pesados , Fluorocarbonos/toxicidade , Metais Pesados/toxicidade , Humanos , Ácidos Alcanossulfônicos/toxicidade , Poluentes Ambientais/toxicidade , Depressão/epidemiologia , Depressão/induzido quimicamente , Cádmio/toxicidade , Inquéritos Nutricionais , Exposição Ambiental/efeitos adversos , Exposição Ambiental/estatística & dados numéricos , Teorema de Bayes , Ácidos Decanoicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA