RESUMO
Detailed knowledge of the genetic variations in diverse crop populations forms the basis for genetic crop improvement and gene functional studies. In the present study, we analyzed a large rice population with a total of 10 548 accessions to construct a rice super-population variation map (RSPVM), consisting of 54 378 986 single nucleotide polymorphisms, 11 119 947 insertion/deletion mutations and 184 736 presence/absence variations. Assessment of variation detection efficiency for different population sizes revealed a sharp increase of all types of variation as the population size increased and a gradual saturation of that after the population size reached 10 000. Variant frequency analysis indicated that â¼90% of the obtained variants were rare, and would therefore likely be difficult to detect in a relatively small population. Among the rare variants, only 2.7% were predicted to be deleterious. Population structure, genetic diversity and gene functional polymorphism of this large population were evaluated based on different subsets of RSPVM, demonstrating the great potential of RSPVM for use in downstream applications. Our study provides both a rich genetic basis for understanding natural rice variations and a powerful tool for exploiting great potential of rare variants in future rice research, including population genetics and functional genomics.
Assuntos
Variação Genética , Oryza , Genética Populacional , Genômica , Oryza/genética , Polimorfismo de Nucleotídeo ÚnicoRESUMO
A new pathway via a cyclic intermediate for the synthesis of ketones from aldehydes and sulfonylhydrazone derivatives under basic conditions is proposed. Several control experiments were performed along with analysis of the mass spectra and in-situ IR spectra of the reaction mixture. Inspired by the new mechanism, an efficient and scalable method for homologation of aldehydes to ketones was developed. A wide variety of target ketones were obtained in yields of 42-95 % by simply heating the 3-(trifluoromethyl)benzene sulfonylhydrazones (3-(Tfsyl)hydrazone) for 2â h at 110 °C with aldehydes and with K2 CO3 and DMSO as base and solvent, respectively.
RESUMO
In search of new-structure compounds with good anticonvulsant activity and low neurotoxicity, a series of 3-(1,2,3,6-tetrahydropyridine)-7-azaindole derivatives was designed and synthesized. Their anticonvulsant activities were evaluated by maximal electroshock (MES) and pentylenetetrazole (PTZ) test, and neurotoxicity was determined by the rotary rod method. In the PTZ-induced epilepsy model, compounds 4i, 4p and 5 k showed significant anticonvulsant activities with ED50 values at 30.55 mg/kg, 19.72 mg/kg and 25.46 mg/kg, respectively. However, these compounds did not show any anticonvulsant activity in the MES model. More importantly, these compounds have lower neurotoxicity with protective index (PI = TD50/ED50) values at 8.58, 10.29 and 7.41, respectively. In order to obtain a clearer structure-activity relationship, more compounds were designed rationally based on 4i, 4p and 5 k and their anticonvulsant activities were evaluated on PTZ models. The results demonstrated that the N-atom at the 7-position of the 7-azaindole and the double-bond in the 1,2,3,6-tetrahydropyridine skeleton was essential for antiepileptic activities.
Assuntos
Anticonvulsivantes , Indóis , Convulsões , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Anticonvulsivantes/química , Eletrochoque , Indóis/uso terapêutico , Pentilenotetrazol , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Relação Estrutura-Atividade , Camundongos , AnimaisRESUMO
Recently, composting cultivation method is widely used in oyster mushroom production. In this study, we focused on the effects of composting processes on nutritional qualities and antioxidant activity of Pleurotus floridanus mushroom fruiting bodies. Three treatments of different composting time (2, 4, and 5 days) were performed with an atmospheric sterilization treatment as the control. The results showed that the pH value, total carbon content, and total nitrogen content of substrate were critical parameters which would significantly affect mushroom qualities and bioactivities. Fruiting bodies of the control demonstrated significantly higher crude protein content, total amino acid content, and essential amino acid content than that of composting treatments. Moreover, fruiting bodies of treatment D4 and D5 manifested significantly higher crude polysaccharide contents. Crude polysaccharide of treatment D4 represented the highest scavenging ability toward both radical 3-ethylbenzthiazoline-6-sulfonic acid (ABTS·+ ) and Hydroxyl radical (OH·). It suggests that composting processes is suitable for oyster mushroom cultivation based on nutritional and antioxidant qualities of fruiting bodies.
Assuntos
Compostagem , Pleurotus , Prunus persica , Antioxidantes/química , Pleurotus/metabolismoRESUMO
An efficient and scalable process for the synthesis of 19-hydroxyprogesterone was obtained through seven steps with 34.5% total yield, which is much higher than the process reported in the literature (11.0% total yield). The plausible ring-opening mechanism of 6,19-epoxy bridge in compound 7 was first proposed and the structures of intermediates were supported by the LC-MS analysis of the reaction mixture.
RESUMO
Continuously increasing global temperatures present great challenges to food security. Grain size, one of the critical components determining grain yield in rice (Oryza sativa L.), is a prime target for genetic breeding. Thus, there is an immediate need for genetic improvement in rice to maintain grain yield under heat stress. However, quantitative trait loci (QTLs) endowing heat stress tolerance and grain size in rice are extremely rare. Here, we identified a novel negative regulator with pleiotropic effects, Thermo-Tolerance and grain Length 1 (TTL1), from the super pan-genomic and transcriptomic data. Loss-of-function mutations in TTL1 enhanced heat tolerance, and caused an increase in grain size by coordinating cell expansion and proliferation. TTL1 was shown to function as a transcriptional regulator and localized to the nucleus and cell membrane. Furthermore, haplotype analysis showed that hapL and hapS of TTL1 were obviously correlated with variations of thermotolerance and grain size in a core collection of cultivars. Genome evolution analysis of available rice germplasms suggested that TTL1 was selected during domestication of the indica and japonica rice subspecies, but still had much breeding potential for increasing grain length and thermotolerance. These findings provide insights into TTL1 as a novel potential target for the development of high-yield and thermotolerant rice varieties.
Assuntos
Oryza , Termotolerância , Oryza/genética , Termotolerância/genética , Fenótipo , Melhoramento Vegetal , Grão Comestível/genéticaRESUMO
BACKGROUND: The Qinba region is the transition region between Indica and Japonica varieties in China. It has a long history of Indica rice planting of more than 7000 years and is also a planting area for fine-quality Indica rice. The aims of this study are to explore different genetic markers applied to the analysis population structure, genetic diversity, selection and optimization of molecular markers of Indica rice, thus providing more information for the protection and utilization on germplasm resources of Indica rice. METHODS: Fifteen phenotypic traits, a core set of 48 SSR markers which originated protocol for identification of rice varieties-SSR marker method in agricultural industry standard of the People's Republic of China (Ministry of Agriculture of the PRC, NY/T1433-2014, Protocol for identification of rice varieties-SSR marker method, 2014), and SNPs data obtained by genotyping-by-sequencing (GBS, NlaIII and MseI digestion, referred to as SNPs-NlaIII and SNPs-MseI, respectively) for this panel of 93 samples using the Illumina HiSeq2000 sequencing platform, were employed to explore the genetic diversity and population structure of 93 samples. RESULTS: The average of coefficient of variation (CV) and diversity index (He) were 29.72% and 1.83 ranging from 3.07% to 137.43%, and from 1.45 to 2.03, respectively. The correlation coefficient between 15 phenotypic traits ranged from 0.984 to -0.604. The first four PCs accounted for 70.693% phenotypic variation based on phenotypic analysis. A total of 379 alleles were obtained using SSR markers, encompassing an average of 8.0 alleles per primer. Polymorphic bands (PPB) and polymorphism information content (PIC) was 88.65% and 0.77, respectively. The Mantel test showed that the correlation between the genetic distance matrix based on SNPs-NlaIII and SNPs-MseI was the largest (R2=0.88), and that based on 15 phenotypic traits and SSR was the smallest (R2=0.09). The 93 samples could be clustered into two subgroups by 3 types of genetic markers. Molecular variance analysis revealed that the genetic variation was 2% among populations and 98% within populations (the Nm was 0.16), Tajima's D value was 1.66, the FST between the two populations was 0.61 based on 72,824 SNPs. CONCLUSIONS: The population genetic variation explained by SNPs was larger than that explained by SSRs. The gene flow of 93 samples used in this study was larger than that of naturally self-pollinated crops, which may be caused by long-term breeding selection of Indica rice in the Qinba region. The genetic structure of the 93 samples was simple and lacked rare alleles.
Assuntos
Oryza , Alelos , China , Marcadores Genéticos , Variação Genética , Genótipo , Humanos , Repetições de Microssatélites/genética , Oryza/genética , Filogenia , Melhoramento Vegetal , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Public concerns are increasing regarding the prevalence and transmission of antibiotic resistance genes (ARGs) in wastewater treatment plants (WWTPs), especially ARG persistence and dissemination in activated sludge (AS). However, the temporal dynamics of ARGs in the AS of WWTPs over a long period of time and their transfer potential after the treatment process upgrade (e.g., total nitrogen reduction from 20 to 15 mg/L in effluent) remain poorly explored. Here, metagenomic sequencing was performed to quantify the ARGs in AS samples from two WWTPs with different treatment processes over a 2-year period. A total of 368 and 426 ARG subtypes affiliated with 20 ARG types were identified separately in the two WWTPs and the similar core ARGs were shared by all 54 samples. There were significant differences in ARG composition in different treatment processes, yet the abundance and diversity of ARGs in the AS samples demonstrated no distinct seasonal patterns. Notably, after the treatment process upgrade, the relative abundance of sulfonamide, beta-lactam, and aminoglycoside resistance genes was reduced by more than 10%, and the transfer potential of ARGs in bacterial pathogens decreased greatly, which suggested that an upgrade could limit the prevalence and transmission of ARGs. Variation partitioning analysis showed that metal resistance genes rather than bacterial community represented the significantly influential factor in shaping ARGs, and some key genera correlated with ARGs were identified through network analysis. These results will deepen our understanding of the dynamic changes in ARG profiles in AS systems and guide wastewater treatment plant upgrades. KEY POINTS: ⢠The potential transfer of ARGs decreased after the treatment process upgrade ⢠Metal resistance genes were the most influential factor in shaping ARG composition ⢠Co-occurrence networks displayed potential hosts of beta-lactam resistance genes.
Assuntos
Antibacterianos , Esgotos , Aminoglicosídeos , Antibacterianos/farmacologia , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Nitrogênio , Esgotos/microbiologia , Sulfonamidas , Águas Residuárias/microbiologia , beta-LactamasRESUMO
Due to the extremely low C/N ratio, high concentration of ammonia nitrogen and refractory organic matter of mature landfill leachate (MLL), appropriate processes should be selected to effectively remove nitrogen and reduce disposal costs. Partial nitritation (PN) and anaerobic ammonia oxidation (AMX) have been used as the main nitrogen removal processes for MLL, and the sludge granulation in PN and AMX processes could contribute to high biological activity, good sedimentation performance, and stable resistance to toxicity. In this study, the O3-PN-AMX biogranules process was selected to effectively remove nitrogen from MLL without carbon addition and pH adjustment. Without uneconomical NH4+-N oxidation and wasting the alkalinity of MLL, ozone pretreatment achieved color removal, decreased humic- and fulvic-like acid substances, and alleviated the MLL toxicity on ammonia oxidizers. In addition, the ozonation of MLL could shorten the start-up time and improve the treatment efficiency and biogranules stability of PN and AMX processes. Efficient and stable nitritation was achieved in PN reactor without strict dissolved oxygen (DO) control, which was attributed to the unique structure of granular sludge, ozone pretreatment, and alternating inhibition of free ammonia and free nitric acid on nitrite oxidizers. Through the application of ozone pretreatment and granular sludge, the nitrogen removal rate (NRR) and nitrogen removal efficiency (NRE) of the O3-PN-AMX biogranules process reached 0.39 kg/m3/day and 85%, respectively, for the undiluted MLL treatment. This study might provide a novel and effective operation strategy of combined process for the efficient, economical, and stable nitrogen removal from MLL.
Assuntos
Ozônio , Poluentes Químicos da Água , Amônia , Oxidação Anaeróbia da Amônia , Reatores Biológicos , Desnitrificação , Nitrogênio/química , Oxirredução , EsgotosRESUMO
BACKGROUND: Kiwifruit (Actinidia chinensis var. Chinensis) is abundant with vitamin C and is a rapidly developing crop in China, New Zealand, and other countries. It has been widely used as a raw material for food and kiwifruit wine. Among these, A. chinensis var. chinensis and A. chinensis var. deliciosa are the most valuable kiwifruit in production. Kiwifruit is a typical dioecious plant and its female and male plants have different economic values. Therefore, sex identification, especially at the seedling stage, has important implications for the scientific planning of its production and economic benefits. However, the kiwifruit sex regulation mechanism is very complex and molecular studies are in the initial stages. Currently, there is not a universal and effective sex identification method for A. chinensis. METHODS: In this study, we used a label-free quantitative proteomics approach to investigate differentially accumulated proteins, including their presence/absence and significantly different levels of abundances during A. chinensis var. chinensis male and female flower bud development. RESULTS: A total of 6485 proteins were identified, among which, 203 were identified in male buds, which were mainly associated with phenylalanine metabolism, tyrosine metabolism, and plant hormone signal transduction. In female buds, 241 were identified, which were mainly associated with the ErbB signaling pathway, growth hormone synthesis, secretion and action, and mRNA surveillance pathway. A total of 373 proteins were significantly differentially accumulated proteins (fold change > 2; P < 0.05), of which, 168 were upregulated and 205 were downregulated. Significant differences between proteins involved 13 signaling pathways, most of which were involved in flavonoid biosynthesis, phenylpropanoid biosynthesis, and starch and sucrose metabolism. Protein interaction analysis showed that enriched protein nodes included cell division cycle 5-like protein, 40S ribosomal protein S8, ribosomal protein, and 40S ribosomal protein like, which interact with 35, 25, 22, and 22 proteins, respectively. CONCLUSIONS: This study provide valuable information for cloning key genes that control sex traits and functionally analyze their roles, which lay a foundation to the development of molecular markers for male and female kiwifruit identification.
RESUMO
OBJECTIVE: Gastric mucosa-associated lymphoid tissue lymphoma is a rare disease, which is associated with a low endoscopic diagnostic accuracy even on tissue biopsy. We aimed to establish a diagnostic process system (M-system) using detailed magnifying endoscopy images to improve the diagnostic efficiency of this disease. METHODS: First, 34 cases from 16 patients with the diagnosis of mucosa-associated lymphoid tissue lymphoma were collected as the study group. The control group included randomly selected patients who were diagnosed with early differentiated carcinoma, undifferentiated carcinoma or inflammation. Then, the endoscopic images of these patients were analyzed by senior physicians. Finally, the M-system was established based on the data extracted from the images reviewed, and its diagnostic efficiency for mucosa-associated lymphoid tissue lymphoma was validated by the junior physicians. RESULTS: A series of elements with high sensitivity and specificity for the diagnosis of mucosa-associated lymphoid tissue lymphoma on endoscopic images were extracted for the establishment of the M-system. Using the M-system, the diagnostic accuracy, sensitivity, specificity and correct indices of mucosa-associated lymphoid tissue lymphoma rose from 65.4 to 79.4%, 41.2 to 76.5%, 73.5 to 80.4% and 0.147 to 0.569%, respectively, all of which were statistically significant. CONCLUSIONS: The M-system can improve the diagnostic accuracy of mucosa-associated lymphoid tissue lymphoma of the superficial-spreading type on detailed magnifying endoscopy. This would help in the early diagnosis of the disease and treatment, which would translate into improved clinical outcomes.
Assuntos
Endoscopia , Linfoma de Zona Marginal Tipo Células B/diagnóstico , Linfoma de Zona Marginal Tipo Células B/patologia , Linfoma não Hodgkin/diagnóstico , Linfoma não Hodgkin/patologia , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/patologia , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Mucosa Gástrica/diagnóstico por imagem , Mucosa Gástrica/patologia , Humanos , Linfoma de Zona Marginal Tipo Células B/diagnóstico por imagem , Linfoma não Hodgkin/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Neoplasias Gástricas/diagnóstico por imagemRESUMO
BACKGROUND: Copy number variations (CNVs) are an important type of structural variations in the genome that usually affect gene expression levels by gene dosage effect. Understanding CNVs as part of genome evolution may provide insights into the genetic basis of important agricultural traits and contribute to the crop breeding in the future. While available methods to detect CNVs utilizing next-generation sequencing technology have helped shed light on prevalence and effects of CNVs, the complexity of crop genomes poses a major challenge and requires development of additional tools. RESULTS: Here, we generated genomic and transcriptomic data of 93 rice (Oryza sativa L.) accessions and developed a comprehensive pipeline to call CNVs in this large-scale dataset. We analyzed the correlation between CNVs and gene expression levels and found that approximately 13% of the identified genes showed a significant correlation between their expression levels and copy numbers. Further analysis showed that about 36% of duplicate pairs were involved in pseudogenetic events while only 5% of them showed functional differentiation. Moreover, the offspring copy mainly contributed to the expression levels and seemed more likely to become a pseudogene, whereas the parent copy tended to maintain the function of ancestral gene. CONCLUSION: We provide a high-accuracy CNV dataset that will contribute to functional genomics studies and molecular breeding in rice. We also showed that gene dosage effect of CNVs in rice is not exponential or linear. Our work demonstrates that the evolution of duplicated genes is asymmetric in both expression levels and gene fates, shedding a new insight into the evolution of duplicated genes.
Assuntos
Variações do Número de Cópias de DNA , Evolução Molecular , Duplicação Gênica , Genes de Plantas , Oryza/genética , Genoma de Planta , TranscriptomaRESUMO
The palea and lemma (hull) are grass-specific organs, and determine grain size and quality. In the study, AH2 encodes a MYB domain protein, and functions in the development of hull and grain. Mutation of AH2 produces smaller grains and alters grain quality including decreased amylose content and gel consistency, and increased protein content. Meantime, part of the hull lost the outer silicified cells, and induces a transformation of the outer rough epidermis to inner smooth epidermis cells, and the body of the palea was reduced in the ah2 mutant. We confirmed the function of AH2 by complementation, CRISPR-Cas9, and cytological and molecular tests. Additionally, AH2, as a repressor, repress transcription of the downstream genes. Our results revealed that AH2 plays an important role in the determination of hull epidermis development, palea identity, and grain size.
Assuntos
Oryza/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Sementes/crescimento & desenvolvimento , Clonagem Molecular , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Mutação , Oryza/fisiologia , Epiderme Vegetal/crescimento & desenvolvimento , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Understanding the genetic basis of natural variation in grain size among diverse rice varieties can help breeders develop high-yielding rice cultivars. Here, we report the discovery of qTGW2, a new semidominant quantitative trait locus for grain width and weight. The corresponding gene, TGW2, encodes CELL NUMBER REGULATOR 1 (OsCNR1) localized to the plasma membrane. A single nucleotide polymorphism (SNP) variation 1818 bp upstream of TGW2 is responsible for its different expression, leading to alteration in grain width and weight by influencing cell proliferation and expansion in glumes. TGW2 interacts with KRP1, a regulator of cell cycle in plants, to negatively regulate grain width and weight. Genetic diversity analysis of TGW2 in 141 rice accessions revealed it as a breeding target in a selective sweep region. Our findings provide new insights into the genetic mechanism underlying grain morphology and grain weight, and uncover a promising gene for improving rice yield.
Assuntos
Oryza , Mapeamento Cromossômico , Grão Comestível/genética , Genes de Plantas , Oryza/genética , Melhoramento Vegetal , Proteínas de Plantas , Locos de Características Quantitativas/genéticaRESUMO
Bacterial communities in the activated sludge (AS) determine the wastewater treatment performance in the municipal wastewater treatment plants (WWTPs). Aiming at identifying the affecting factors and the variation patterns of the bacterial assemblages in AS, a 2-year time-series AS samples were collected from two separated WWTPs and metagenomic sequencing was conducted. Obvious seasonal shift and succession of the bacterial community were observed in both WWTPs on the genus and species levels, especially for the persistent taxa, implying that temperature was a decisive factor for maintaining bacterial assemblage patterns in long-term period. Taxa abundance distribution (TAD) concerning occurrence frequency and average abundance were found fitting for exponential formulations, and the approximately equal total abundance of persistent taxa suggested that stable and high abundance (~ 90%) of core functional bacterial groups would help to maintain wastewater treatment performance. Drastic changes of environmental factors were found causing temporally significant bacterial structure variation, while the innate correlations between bacterial species could recover the community gradually and maintain relative stability of the AS system. Delayed correlations between environmental factors and abundant (persistent or intermittent) bacterial species were observed widely, while synchronous biotic interactions were identified more frequently. Besides, bacterial species with similar functions were prone to cluster together and shared the same seasonal variation pattern, implicating that the cooperation of functional correlated taxa played the most dominant role in shaping the bacterial assemblages. Furthermore, rare bacterial groups were to be explored for removing emerging pollutants with lower concentrations. The results of this study would assist dealing with operational defect and optimize the treatment system in WWTPs.
Assuntos
Bactérias/classificação , Metagenômica , Microbiota , Esgotos/microbiologia , Animais , Fezes/microbiologia , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , HumanosRESUMO
Anaerobic ammonium oxidation (anammox)-based nitrogen removal saves aeration energy and organic carbon costs, attributed to its anaerobic and autotrophic nature. However, due to the slow growth of anaerobic ammonium oxidation bacteria (AnAOB), drawbacks including long startup time and sensitivity to toxins still hamper the application of anammox-based processes. To cope with the slow growth of AnAOB, various bioreactor configurations have been investigated for the capability of retaining anammox biomass, among which, the expanded granular sludge bed (EGSB) reactor is a promising option. In this study, two laboratory-scale EGSB reactors were used to gain insights of microbial population and their response to amending biofilm-carriers, aiming to enhance the biomass retention of AnAOB. The respective ammonium and nitrite removal efficiencies were up to over 90%, and the overall nitrogen removal efficiency (NRE) was stable at over 70%, in the EGSB reactor amended with carriers (CEGSB). Compared to the control EGSB, CEGSB's observed performance was more stable during the 236-day operational period. The abundance of AnAOB reached 22% in the EGSB and 49% in the CEGSB. It was also observed that Ca. Brocadia (14.25%) and Asahi BRW2 (33.19%) coexisted in the CEGSB. The dynamics of major metabolisms and functional genes involved in nitrogen conversion were further observed by FAPROTAX based on the taxonomic data, providing more insights into the functions of the microbial communities.
Assuntos
Compostos de Amônio/metabolismo , Bactérias/metabolismo , Reatores Biológicos/microbiologia , Desnitrificação/fisiologia , Esgotos/microbiologia , Purificação da Água/métodos , Anaerobiose/fisiologia , Nitrogênio/metabolismo , OxirreduçãoRESUMO
High-quality and disease-resistant male sterile lines have great potential for applications in hybrid rice breeding. We introduced specific mutations into the TMS5, Pi21, and Xa13 genes in Pinzhan intermediate breeding material using the CRISPR/Cas9 multiplex genome editing system. We found that the transgene-free homozygous triple tms5/pi21/xa13 mutants obtained in the T1 generation displayed characteristics of thermosensitive genic male sterility (TGMS) with enhanced resistance to rice blast and bacterial blight. Our study provides a convenient and effective way of converting breeding intermediate material into TGMS lines through multiplex gene editing, which could significantly accelerate the breeding of sterile lines.
Assuntos
Resistência à Doença/genética , Edição de Genes , Doenças das Plantas/genética , Infertilidade das Plantas/genética , Temperatura , Sequência de Bases , Mutação/genéticaRESUMO
Excavating the quantitative trait locus (QTL) associated with rice cooking quality, analyzing candidate genes, and improving cooking quality-associated traits of rice varieties by genetic breeding can effectively improve the taste of rice. In this study, we used the indica rice HZ, the japonica rice Nekken2 and 120 recombinant inbred lines (RILs) populations constructed from them as experimental materials to measure the gelatinization temperature (GT), gel consistency (GC) and amylose content (AC) of rice at the maturity stage. We combined the high-density genetic map for QTL mapping. A total of 26 QTLs associated with rice cooking quality (1 QTL associated with GT, 13 QTLs associated with GC, and 12 QTLs associated with AC) were detected, among which the highest likelihood of odd (LOD) value reached 30.24. The expression levels of candidate genes in the localization interval were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR), and it was found that the expression levels of six genes were significantly different from that in parents. It was speculated that the high expression of LOC_Os04g20270 and LOC_Os11g40100 may greatly increase the GC of rice, while the high expression of LOC_Os01g04920 and LOC_Os02g17500 and the low expression of LOC_Os03g02650 and LOC_Os05g25840 may reduce the AC. The results lay a molecular foundation for the cultivation of new high-quality rice varieties, and provide important genetic resources for revealing the molecular regulation mechanism of rice cooking quality.
Assuntos
Oryza , Locos de Características Quantitativas , Oryza/genética , Melhoramento Vegetal , Culinária , Estudos de Associação GenéticaRESUMO
Vitamin B6 (VB6), as an essential component involved in numerous biological activities of animals and plants, reflects the nutritional quality of cereal crops such as rice. Few studies have been conducted to mine the genes controlling the VB6 content in rice grains, and the available studies remain to be deepened. In this study, the recombinant inbred lines created from parents 'HZ' and 'Nekken2' served as the experimental materials. Based on QTL mapping, the initial screening identified ten candidate genes. The expression levels of LOC_Os01g52450, LOC_Os01g52500, LOC_Os05g09500, LOC_Os05g09440, LOC_Os05g20570, and LOC_Os05g36270 showed significant differences between the parents. According to the gene expression and parental VB6 content, we hypothesized LOC_Os05g09500 as the key gene affecting the VB6 content in rice grains, and the high expression of this gene significantly influenced the VB6 content. The results of this study fill a gap in the QTL mapping on the VB6 content of rice grains and provide theoretical support for elucidating the molecular genetic mechanisms and cloning the related genes of VB6 synthesis in rice. In addition, the findings have significant implications for identifying, screening, and breeding new rice cultivars with high VB6 content.