Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Mol Cell Cardiol ; 190: 62-75, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583797

RESUMO

Intimal hyperplasia is a complicated pathophysiological phenomenon attributable to in-stent restenosis, and the underlying mechanism remains unclear. Interleukin enhancer-binding factor 3 (ILF3), a double-stranded RNA-binding protein involved in regulating mRNA stability, has been recently demonstrated to assume a crucial role in cardiovascular disease; nevertheless, its impact on intimal hyperplasia remains unknown. In current study, we used samples of human restenotic arteries and rodent models of intimal hyperplasia, we found that vascular smooth muscle cell (VSMC) ILF3 expression was markedly elevated in human restenotic arteries and murine ligated carotid arteries. SMC-specific ILF3 knockout mice significantly suppressed injury induced neointimal formation. In vitro, platelet-derived growth factor type BB (PDGF-BB) treatment elevated the level of VSMC ILF3 in a dose- and time-dependent manner. ILF3 silencing markedly inhibited PDGF-BB-induced phenotype switching, proliferation, and migration in VSMCs. Transcriptome sequencing and RNA immunoprecipitation sequencing depicted that ILF3 maintained its stability upon binding to the mRNA of the high-mobility group box 1 protein (HMGB1), thereby exerting an inhibitory effect on the transcription of dual specificity phosphatase 16 (DUSP16) through enhanced phosphorylation of signal transducer and activator of transcription 3 (STAT3). Therefore, the results both in vitro and in vivo indicated that the loss of ILF3 in VSMC ameliorated neointimal hyperplasia by regulating the STAT3/DUSP16 axis through the degradation of HMGB1 mRNA. Our findings revealed that vascular injury activates VSMC ILF3, which in turn promotes intima formation. Consequently, targeting specific VSMC ILF3 may present a potential therapeutic strategy for ameliorating cardiovascular restenosis.


Assuntos
Proteína HMGB1 , Hiperplasia , Camundongos Knockout , Músculo Liso Vascular , Miócitos de Músculo Liso , Proteínas do Fator Nuclear 90 , Estabilidade de RNA , Fator de Transcrição STAT3 , Túnica Íntima , Animais , Humanos , Masculino , Camundongos , Movimento Celular , Proliferação de Células , Modelos Animais de Doenças , Regulação da Expressão Gênica , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Neointima/metabolismo , Neointima/patologia , Proteínas do Fator Nuclear 90/metabolismo , Proteínas do Fator Nuclear 90/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Fator de Transcrição STAT3/metabolismo , Túnica Íntima/metabolismo , Túnica Íntima/patologia
2.
Mol Biol Rep ; 51(1): 220, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38281218

RESUMO

D-ribose, an ubiquitous pentose compound found in all living cells, serves as a vital constituent of numerous essential biomolecules, including RNA, nucleotides, and riboflavin. It plays a crucial role in various fundamental life processes. Within the cellular milieu, exogenously supplied D-ribose can undergo phosphorylation to yield ribose-5-phosphate (R-5-P). This R-5-P compound serves a dual purpose: it not only contributes to adenosine triphosphate (ATP) production through the nonoxidative phase of the pentose phosphate pathway (PPP) but also participates in nucleotide synthesis. Consequently, D-ribose is employed both as a therapeutic agent for enhancing cardiac function in heart failure patients and as a remedy for post-exercise fatigue. Nevertheless, recent clinical studies have suggested a potential link between D-ribose metabolic disturbances and type 2 diabetes mellitus (T2DM) along with its associated complications. Additionally, certain in vitro experiments have indicated that exogenous D-ribose exposure could trigger apoptosis in specific cell lines. This article comprehensively reviews the current advancements in D-ribose's digestion, absorption, transmembrane transport, intracellular metabolic pathways, impact on cellular behaviour, and elevated levels in diabetes mellitus. It also identifies areas requiring further investigation.


Assuntos
Diabetes Mellitus Tipo 2 , Insuficiência Cardíaca , Doenças Metabólicas , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Ribose/metabolismo , Trifosfato de Adenosina
3.
Anim Biotechnol ; 35(1): 2356110, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38804592

RESUMO

The inducing activation event of secondary hair follicle (SHF)-stem cells is considered a key biological process in the SHF regeneration, and the morphogenesis of cashmere fiber in cashmere goats. The miR-361-5p was essentially implicated in the induced activation of SHF-stem cells of cashmere goats, but its functional mechanisms are unclear. Here, we confirmed miR-361-5p was significantly downregulated in anagen SHF bugle of cashmere goats compared with that at telogen, and miR-361-5p expression was significantly lower in SHF-stem cells after activation than its counterpart before activation. Further, we found that miR-361-5p could negatively regulate the induced activation event of SHF-stem cells in cashmere goats. Mechanistically, through dual-luciferase reporter assays, miR-361-5p specifically bound with FOXM1 mRNA in SHF-stem cells of cashmere goats and negatively regulated the expression of FOXM1 gene. Also, through overexpression/knockdown analysis of FOXM1 gene, our results indicated that FOXM1 upregulated the expression of Wnt/ß-catenin pathway related genes in SHF-stem cells. Moreover, based on TOP/FOP-flash Wnt report assays, the knockdown of miR-361-5p promotes the Wnt/ß-catenin pathway activation through upregulating the FOXM1 expression in SHF-stem cells. Finally, we demonstrated that miR-361-5p negatively regulated the induced activation of SHF-stem cells through FOXM1 mediated Wnt/ß-catenin pathway in cashmere goats.


Assuntos
Proteína Forkhead Box M1 , Cabras , Folículo Piloso , MicroRNAs , Células-Tronco , Via de Sinalização Wnt , Animais , Cabras/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Via de Sinalização Wnt/genética , Folículo Piloso/metabolismo , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Células-Tronco/fisiologia , Células-Tronco/metabolismo , Técnicas de Silenciamento de Genes
4.
Sensors (Basel) ; 24(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38894168

RESUMO

In medical imaging, detecting tissue anomalies is vital for accurate diagnosis and effective treatment. Electrical impedance tomography (EIT) is a non-invasive technique that monitors the changes in electrical conductivity within tissues in real time. However, the current challenge lies in simply and accurately reconstructing multi-conductivity distributions. This paper introduces a layered fusion framework for EIT to enhance imaging in multi-conductivity scenarios. The method begins with pre-imaging and extracts the main object from the fuzzy image to form one layer. Then, the voltage difference in the other layer, where the local anomaly is located, is estimated. Finally, the corresponding conductivity distribution is established, and multiple layers are fused to reconstruct the multi-conductivity distribution. The simulation and experimental results demonstrate that compared to traditional methods, the proposed method significantly improves multi-conductivity separation, precise anomaly localization, and robustness without adding uncertain parameters. Notably, the proposed method has demonstrated exceptional accuracy in local anomaly detection, with positional errors as low as 1% and size errors as low as 33%, which significantly outperforms the traditional method with respective minimum errors of 9% and 228%. This method ensures a balance between the simplicity and accuracy of the algorithm. At the same time, it breaks the constraints of traditional linear methods, struggling to identify multi-conductivity distributions, thereby providing new perspectives for clinical EIT.

5.
Sensors (Basel) ; 24(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38257426

RESUMO

This paper introduces a sensitivity matrix decomposition regularization (SMDR) method for electric impedance tomography (EIT). Using k-means clustering, the EIT-reconstructed image can be divided into four clusters, derived based on image features, representing posterior information. The sensitivity matrix is then decomposed into distinct work areas based on these clusters. The elimination of smooth edge effects is achieved through differentiation of the images from the decomposed sensitivity matrix and further post-processing reliant on image features. The algorithm ensures low computational complexity and avoids introducing extra parameters. Numerical simulations and experimental data verification highlight the effectiveness of SMDR. The proposed SMDR algorithm demonstrates higher accuracy and robustness compared to the typical Tikhonov regularization and the iterative penalty term-based regularization method (with an improvement of up to 0.1156 in correlation coefficient). Moreover, SMDR achieves a harmonious balance between image fidelity and sparsity, effectively addressing practical application requirements.

6.
BMC Genomics ; 24(1): 720, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017403

RESUMO

BACKGROUND: Numerous factors influence the growth and development of cashmere. Existing research on cashmere has predominantly emphasized a single omics level. Integrating multi-omics analyses can offer a more comprehensive understanding by encompassing the entire spectrum. This study more accurately and comprehensively identified the key factors influencing cashmere fineness using multi-omics analysis. METHODS: This study used skin tissues of coarse cashmere type (CT_LCG) and fine cashmere type Liaoning cashmere goats (FT_LCG) for the analysis. This study employed an integrated approach involving transcriptomics, translatomics, proteomics, and metabolomics to identify substances associated with cashmere fineness. The findings were validated using parallel reaction monitoring (PRM) and multiple reaction monitoring (MRM) techniques. RESULTS: The GO functional enrichment analysis identified three common terms: multicellular organismal process, immune system process, and extracellular region. Furthermore, the KEGG enrichment analysis uncovered the involvement of the arachidonic acid metabolic pathway. Protein expression trends were verified using PRM technology. The expression trends of KRT79, as confirmed by PRM, were consistent with those observed in TMT proteomics and exhibited a positive regulatory effect on cashmere fineness. Metabolite expression trends were confirmed using MRM technology. The expression trends of 9 out of 15 validated metabolites were in agreement with those identified in the non-targeted metabolomics analysis. CONCLUSIONS: This study employed multi-omics analysis to identify key regulators of cashmere fineness, including PLA2G12A, KRT79, and prostaglandin B2. The findings of this study offer valuable data and establish a theoretical foundation for conducting comprehensive investigations into the molecular regulatory mechanisms and functional aspects of cashmere fineness.


Assuntos
Multiômica , Pele , Animais , Pele/metabolismo , Cabras/genética
7.
Anim Biotechnol ; 34(4): 1583-1593, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35253626

RESUMO

Liaoning cashmere goat (LCG) is a famous cashmere goat breed in China. Cashmere fineness, as an important index to evaluate cashmere quality, is also one of the problems to be improved for Liaoning cashmere goats. Transcriptome studies all mRNA transcribed by a specific tissue or cell in a certain period. It is a key link in the study of gene expression regulation. It plays an important role in the analysis of biological growth and disease. Transcriptome is spatio-temporal specific, that is, gene expression varies in different tissues or at different times. Three coarser and three fine LCG skin samples were sequenced by RNA-seq technology, and a total of 427 differentially expressed genes were obtained, including 291 up-regulated genes and 136 down-regulated genes. In the experiment, we screened out 16 genes that had significant differences in the expression of coarse and fine cashmere of Liaoning cashmere goats, so it was inferred that these 16 genes might have regulatory effects on cashmere fineness. Moreover, GO gene set enrichment analysis revealed that differential genes mainly consist of immune response, MHC protein complex, Heme binding and other pathways. KEGG analysis showed that transplant-versus-host disease and allograft rejection were the main pathways of differential genes.


Assuntos
Regulação da Expressão Gênica , Transcriptoma , Animais , Perfilação da Expressão Gênica/veterinária , Sequência de Bases , Cabras/genética , Folículo Piloso/metabolismo
8.
Anim Biotechnol ; 34(7): 2166-2174, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35649423

RESUMO

LncRNA (long non-coding RNA) is an RNA molecule with a length between 200 and 100,000 nt. It does not encode proteins and is involved in a variety of intracellular processes, becoming a research hotspot of genetics. To identify key lncRNAs associated with dairy mastitis, we collected mammary epithelial tissue samples of Normal disease-free Holstein cows (HCN) and unhealthy Holstein cows with Staphylococcus aureus (HCU) and performed RNA sequencing (RNA-seq) on the samples. A total of 270 differentially expressed lncRNAs and 500 differentially expressed mRNAs were identified by high-throughput sequencing and bioinformatics analysis. Furthermore, Hydrolase activity is the most enriched in GO, and ErbB signaling pathway is significantly enriched in KEGG. In addition, through qPCR validation of 5 candidate lncRNAs in HCN and HCU, four differentially expressed lncRNAs MSTRG.498, MSTRG57.1, MSTRG.41.1 and MSTRG 124.1 were confirmed to have significant differentially expressed in cow mastitis. Also, lncRNA MSTRG.498 and its target gene, SMC4, might directly or indirectly play a role in cow mastitis. The regulatory network of lncRNA-miRNA-mRNA has been inferred from a bioinformatics perspective, which may assist understand the underlying molecular mechanism of lncRNAs involved in regulating mastitis in cows. Our findings will provide meaningful resources for further research on the regulatory function of lncRNAs in cow mastitis.


Assuntos
Doenças dos Bovinos , MicroRNAs , RNA Longo não Codificante , Infecções Estafilocócicas , Feminino , Bovinos/genética , Animais , RNA Longo não Codificante/genética , Staphylococcus aureus/genética , MicroRNAs/genética , Sequenciamento de Nucleotídeos em Larga Escala/veterinária , Análise de Sequência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/veterinária
9.
Anim Biotechnol ; 34(3): 482-494, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34550847

RESUMO

Circular RNAs (circRNAs), a novel class of non-coding RNAs, can interact with miRNAs through a sequence-driven sponge mechanism, thereby regulating the expression of their downstream target genes. CircRNA-1967 was found in secondary hair follicles (SHFs) of cashmere goats, but its functions are not clear. Here, we showed that both circRNA-1967 and its host gene BNC2 had significantly higher expression in SHF bulge at anagen than those at telogen of cashmere goats. Also, circRNA-1967 participates in the differentiation of SHF stem cells (SHF-SCs) into hair follicle lineage in cashmere goats. RNA pull-down assay verified that circRNA-1967 interacts with miR-93-3p. We also indicated that circRNA-1967 promoted LEF1 expression in SHF-SCs of cashmere goats. By dual-luciferase reporter analysis, we found that circRNA-1967 up-regulated LEF1 expression through the miR-93-3p-mediated pathway. The results from this study demonstrated that circRNA-1967 participated in the differentiation of goat SHF-SCs into hair follicle lineage by sponging miR-93-3p to enhance LEF1 expression. Our founding might constitute a novel pathway for revealing the potential mechanism of the differentiation of SHF-SCs into hair follicle lineage in cashmere goats. Also, these results provided a valuable basis for further enhancing the intrinsic regeneration of cashmere goat SHFs with the formation and growth of cashmere fibers.


Assuntos
MicroRNAs , RNA Circular , Animais , RNA Circular/genética , RNA Circular/metabolismo , Folículo Piloso/metabolismo , Cabras , MicroRNAs/genética , MicroRNAs/metabolismo , Diferenciação Celular/genética
10.
Anim Biotechnol ; 34(7): 2863-2874, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36165594

RESUMO

In this study, a total of 1140 Liaoning Cashmere Goats (LCG) were genotyped for single nucleotide polymorphism (SNP) of NFKBIA gene. There are 15 SNPs and 7 genotypes have been found, and G1547A (GG) genotype has been associated with cashmere fineness and cashmere yield. An integrated ceRNA regulatory network of NFKBIA gene was made. To prove NFKBIA and these non-coding RNAs (ncRNAs) may be related to cashmere fineness, we performed qPCR on these ncRNA in LCG coarse type skin (CT-LCG) and LCG fine type skin (FT-LCG). The result of qPCR showed lncRNA XLOC_011060 and ciRNA452 are at high expression level in CT-LCG, all miRNAs appear high expressed in FT-LCG, and mir-93 was the most significant difference between CT-LCG and FT-LCG. In addition, five miRNAs were selected for qPCR in different genotypes. The qPCR results showed that mir-93 might negatively regulate cashmere fineness and mir-17-5p may play a positive role in regulating cashmere fineness of individuals with G1355A (AG) genotype. These results demonstrated that NFKBIA gene is associated with cashmere fineness of LCG and G1547A (GG) genotype is the preferred marker genotype for cashmere fineness.


Assuntos
MicroRNAs , RNA Longo não Codificante , Animais , Polimorfismo de Nucleotídeo Único/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Genótipo , Cabras/genética
11.
Anim Biotechnol ; 34(2): 310-320, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34431751

RESUMO

N6-methyladenosine (m6A) is the most frequent internal modification of mRNA and lncRNA in eukaryotes. We used two high-throughput sequencing method, m6A-seq and RNA-seq to identify pivotal m6A-modified genes in cashmere fineness and fiber growth. 8062 m6A peaks were detected by m6A-seq, including 2157 upregulated and 6445 downregulated. Furthermore, by comparing m6A-modified genes of the male Liaoning Cashmere Goat (M-LCG) and female Liaoning Cashmere Goat (F-LCG) skin tissues, we get 862 differentially expressed m6A-modified genes. To identify differently expressed m6A genes associated with cashmere fineness, 11 genes were selected for validation using real time fluorescent quantitative PCR in M-LCG and F-LCG. This study provides an acadamic basis on the molecular regulation mechanism of m6A modification in cashmere growth process.


Assuntos
Cabras , Pele , Masculino , Feminino , Animais , Metilação , Cabras/genética , Pele/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , RNA-Seq
12.
Anim Biotechnol ; 34(7): 2094-2105, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35622393

RESUMO

Reproductive traits have a high economic value in goat breeding, and increasing the number of lambs produced by ewes is of great importance to improve the production efficiency of goat farming. Lambing traits in goats are low heritability traits, but their genetic basis is ultimately determined by genes. This study aimed to investigate the relationship between INHA, RARG, and PGR gene polymorphisms and production performance, such as lambing, cashmere production, milk production, and body size in Liaoning cashmere goats. A total of six single nucleotide polymorphisms (SNPs) loci were identified in these three genes, G144A and T504C on the INHA gene, A56G, G144A, G490C on the RARG gene, and G109519T on the PGR gene. For lambing and cashmere production traits, the AA genotype of G144A on the INHA gene, TT on the T504C genotype, GG genotype of G144A on the INHA gene, A56G, G144A, and T504C on RARG and G109519T on PGR gene are dominant genotypes. AATT is a dominant haplotype combination. Allele G can be used as a molecular marker for lambing, cashmere, and milk production traits in Liaoning cashmere goats. Marker-assisted selection can be used for early selection to achieve improvement of genetic traits in Liaoning cashmere goats.


Assuntos
Cabras , Polimorfismo de Nucleotídeo Único , Ovinos/genética , Animais , Feminino , Cabras/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Genótipo , Carneiro Doméstico , Reprodução/genética
13.
Anim Biotechnol ; 34(7): 2324-2335, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35749728

RESUMO

This study aimed to investigate the relationship between the polymorphism of bile acid-CoA: amino acid N-acyltransferase (BAAT) and collagen type I alpha 1 chain (COL1A1) genes and the production performance of Liaoning Cashmere goat (LCG). The potential single nucleotide polymorphisms (SNPs) of LCG were detected by sequence comparison of BAAT and COL1A1 genes and PCR-Seq polymorphism, and the effect of SNPs on production performance was analyzed by SPSS software. The results showed that three SNPs loci were detected in BAAT gene: G7900A, T7967C, C7998T, and one SNP locus T6716C was detected in COL1AL gene. At G7900A locus, the dominant genotype for cashmere performance was GG, and the dominant genotype for body measurement traits and milk production traits was AG. At T7967C locus, the dominant genotype for cashmere performance was TT, and the dominant genotype for body measurement traits and milk production traits was CC. At C7998T locus, TT was the dominant genotype for cashmere performance, body measurement traits, and milk production traits. At the T6716C locus, TT was the dominant genotype for cashmere performance, body measurement traits, and milk production traits. H1H1: AACC is the dominant haplotype combination. Therefore, this study will provide a reliable reference for future research on cashmere production performance, body measurement traits, and milk production traits of LCG.


Assuntos
Cabras , Polimorfismo de Nucleotídeo Único , Animais , Polimorfismo de Nucleotídeo Único/genética , Cabras/genética , Fenótipo , Genótipo , Reação em Cadeia da Polimerase
14.
Anim Biotechnol ; 34(3): 698-708, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34747683

RESUMO

Cashmere fineness is getting thicker, which is one of the key problems in cashmere breeding, however, there have been no systematic studies on the molecular regulation of cashmere fineness. The aim of this study was to investigate the relationship between KRT26 and TCHH gene polymorphism and production performance in Liaoning cashmere goats (LCG). The potential single nucleotide polymorphisms (SNPs) of LCG were detected by sequence alignment and PCR-Seq polymorphism of KRT26 and TCHH genes and analyzed the effect of SNPs on production performance by SPSS software. Two SNPs sites (A559T and A6839G) of two genes were detected. The AA genotype of KRT26 A559T locus was the dominant genotype. AG and GG at TCHH A6839G locus were the dominant genotypes. AAAA was the dominant haplotype combination. The results showed that KRT26 and TCHH genes were associated with cashmere fineness of LCG, and A559T (AA) and A6839G (GG) genotypes were the preferred marker genotypes for cashmere fineness, which provided more theoretical basis for further research on cashmere fineness.


Assuntos
Cabras , Polimorfismo de Nucleotídeo Único , Animais , Polimorfismo de Nucleotídeo Único/genética , Cabras/genética , Leite , Fenótipo , Reação em Cadeia da Polimerase
15.
Anim Biotechnol ; 34(5): 1796-1806, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35507891

RESUMO

Liaoning cashmere goat (LCG) have tall bones, high cashmere production and outstanding meat production performance. In recent years, good breeding progress has not been made in terms of body size, meat yield, milk yield and other properties in terms of production. The study focused on the correlation between the SNPs of MSTN and IGFBP-3 genes with the body size performance, cashmere production and milk performance. The MSTN and IGFBP-3 gene sequence alignment and PCR-Seq polymorphism were used to detect the potential SNPs, and the correlation with production performance was analyzed by SPSS and SHEsis software. The results showed that the TT genotype at the T1662G locus of the MSTN gene is dominant and has significant advantages in body measurements such as sacrum height, chest width, and waist height. The C allele at the C4021T locus of IGFBP-3 gene shows an advantage in the body measurement performance. Among the haplotype combinations, H2H2:TGTC is preponderant combination for body size performance, H2H2:TGTC and H1H2:TGCC are preponderant combinations for cashmere production performance, H1H3:GGCC is preponderant combination for milk production performance. It may be a molecular marker for future selection and breeding.


Assuntos
Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina , Polimorfismo de Nucleotídeo Único , Animais , Polimorfismo de Nucleotídeo Único/genética , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Cabras/genética , Genótipo , Tamanho Corporal/genética
16.
Anim Biotechnol ; 34(8): 3827-3836, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37428531

RESUMO

Liaoning cashmere goat (LCG) is one of the excellent cashmere goat breeds in China. Because of its larger size, better cashmere, and better cashmere production performance, people pay special attention to it. This article mainly studied the relationship between SNP loci of LIPE gene and ITGB4 gene and milk production, cashmere production and body measurement traits of LCGs. We further identified potential SNP loci by PCR-Seq polymorphism detection and gene sequence comparison of LIPE and ITGB4 genes. Further, we use SPSS and SHEsis software to analyze their relationship to production performance. The consequence indicated that CC genotype of LIPE gene T16409C locus was dominant genotype in milk production and cashmere production, while CT genotype of LIPE gene T16409C locus was dominant in body size. The CT genotype of C168T locus of ITGB4 gene is the dominant genotype of body type and cashmere production, while the dominant genotype of milk production is TT genotype. Through joint analysis, in haploid combinations, H1H2:CCCT is the dominant haplotype combination in cashmere fineness. H3H4:TTCT is a dominant haplotype combination of milk production traits and body measurement traits. These dominant genotypes can provide a reliable basis for the study of production performance of LCG.


Assuntos
Cabras , Polimorfismo de Nucleotídeo Único , Animais , Polimorfismo de Nucleotídeo Único/genética , Cabras/genética , Leite , Fenótipo , Genótipo
17.
Funct Integr Genomics ; 22(4): 503-513, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35366687

RESUMO

Proteomics is the study of all proteins expressed by a cell or even an organism. However, knowledge of proteins that regulate the fineness of cashmere is limited. Liaoning cashmere goat (LCG) is a valuable genetic resource of China. The skin samples of Liaoning cashmere goats during the growing period were collected, performed tandem mass tag (TMT) method, and identified 117 differentially expressed proteins in CT_LCG (course type) and FT_LCG (fine type). To verify proteins differentially expressed in LCG, we performed PRM validation on three candidate proteins (ALB, SDC1, and ITGB4) in CT-LCG and FT-LCG. Furthermore, primary metabolic process and lysosome are most enriched in the GO and KEGG pathways, respectively. In addition, we also derived a protein-protein interaction (PPI) regulatory network from the perspective of bioinformatics. This study sought to elucidate the molecular mechanism of differential proteins regulating cashmere fineness of Liaoning cashmere goats by using TMT quantitative proteomics analysis. Differentially expressed proteins ALB and SDC1 may regulate cashmere fineness; ITGB4 can become a promising protein for further study. They can be used as key proteins to lay a foundation for studying cashmere fineness of Liaoning cashmere goats.


Assuntos
Cabras , Proteômica , Animais , China , Biologia Computacional , Cabras/genética , Pele/metabolismo
18.
J Nanobiotechnology ; 20(1): 343, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35883146

RESUMO

BACKGROUND: Promoting diabetic wound healing is still a challenge, and angiogenesis is believed to be essential for diabetic wound healing. Vermiculite is a natural clay material that is very easy to obtain and exhibits excellent properties of releasing bioactive ions, buffering pH, adsorption, and heat insulation. However, there are still many unsolved difficulties in obtaining two-dimensional vermiculite and using it in the biomedical field in a suitable form. RESULTS: In this study, we present a versatile organic-inorganic composite scaffold, which was constructed by embedding two-dimensional vermiculite nanosheets in polycaprolactone electrospun fibers, for enhancing angiogenesis through activation of the HIF-1α signaling pathway and promoting diabetic wound healing both in vitro and in vivo. CONCLUSIONS: Together, the rational-designed polycaprolactone electrospun fibers-based composite scaffolds integrated with two-dimensional vermiculite nanosheets could significantly improve neo-vascularization, re-epithelialization, and collagen formation in the diabetic wound bed, thus promoting diabetic wound healing. This study provides a new strategy for constructing bioactive materials for highly efficient diabetic wound healing.


Assuntos
Diabetes Mellitus , Alicerces Teciduais , Humanos , Poliésteres/química , Alicerces Teciduais/química , Cicatrização
19.
Anim Biotechnol ; : 1-11, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36576137

RESUMO

Circular RNAs (CircRNA) are a special type of non-coding RNA molecule with a closed ring structure and are not affected by RNA exonucases. It has stable expression, is not easy to degrade, and exists in most eukaryotes. However, circRNA regulation of cow mastitis has not been widely recognized. Mammary epithelial tissues were collected from healthy Holstein cows (HCN) and mastitis Holstein cows (HCU). RNA sequencing (RNA SEQ) was performed for the differentially expressed circRNAs, and analysis results showed that 19 differentially expressed circRNAs were identified in HCN and HCU, among which 6 circRNAs were up-regulated and 13 circRNAs were down-regulated. We randomly selected nine circRNAs for Q-PCR verification, and the results showed consistent expression. Three circRNAs: circRNA2860, circRNA5323 and circRNA4027 were confirmed to be significantly differentially expressed circRNAs in cow mastitis. Also, their host genes TRPS1, SLC12A2 and MYH11 might be directly or indirectly play a role in cow mastitis. Furthermore, RNA polymerase transcription factor binding and tight junction are most enriched in GO and KEGG pathways, respectively. In addition, the regulatory network of circRNA-miRNA has been inferred from a bioinformatics perspective, which may help to understand the underlying molecular mechanism of circRNAs involved in regulating mastitis in cows.

20.
Anim Biotechnol ; : 1-15, 2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36527393

RESUMO

The purpose of this study was to analyze the relationship between COL6A5 (collagen type VI alpha 5 chain) and LOC102181374 (alcohol dehydrogenase 1) genes and the production performance of Liaoning cashmere goats by single nucleotide polymorphism (SNP). We have searched for SNP loci of COL6A5 and LOC102181374 genes through sequence alignment and PCR experiments, and have used SPSS and SHEsis software to analyze production data. We obtained five SNP loci in total, including three SNP loci (G50985A, G51140T, G51175A) in COL6A5 gene and two SNP loci (A10067G, T10108C) in LOC102181374 gene. The genotypes G50985A (AG), G51140T (GT), G51175A (AA), A10067G (AA), and T10108C (CC) of these loci have certain advantages in improving the production performance of Liaoning cashmere goats. The haplotype combinations that can improve production performance in COL6A5 gene were H1H5:AGGGAG, H4H4:GGGGAA, and H4H4:GGGGAA. H3H3:GGCC and H2H4:AGTT were the dominant combinations in LOC102181374 gene. At G51175A and A10067G loci, we found that H1H2:AAAG and H1H3:AGAA have dominant effects. These results may provide some support for the molecular breeding of production traits in Liaoning cashmere goats.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA