Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 329
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(6): e1011011, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37276223

RESUMO

Isoprothiolane (IPT) resistance has emerged in Magnaporthe oryzae, due to the long-term usage of IPT to control rice blast in China, yet the mechanisms of the resistance remain largely unknown. Through IPT adaptation on PDA medium, we obtained a variety of IPT-resistant mutants. Based on their EC50 values to IPT, the resistant mutants were mainly divided into three distinct categories, i.e., low resistance (LR, 6.5 ≤ EC50 < 13.0 µg/mL), moderate resistance 1 (MR-1, 13.0 ≤ EC50 < 25.0 µg/mL), and moderate resistance 2 (MR-2, 25.0 ≤ EC50 < 35.0 µg/mL). Molecular analysis of MoIRR (Magnaporthe oryzae isoprothiolane resistance related) gene demonstrated that it was associated only with the moderate resistance in MR-2 mutants, indicating that other mechanisms were associated with resistance in LR and MR-1 mutants. In this study, we mainly focused on the characterization of low resistance to IPT in M. oryzae. Mycelial growth and conidial germination were significantly reduced, indicating fitness penalties in LR mutants. Based on the differences of whole genome sequences between parental isolate and LR mutants, we identified a conserved MoVelB gene, encoding the velvet family transcription factor, and genetic transformation of wild type isolate verified that MoVelB gene was associated with the low resistance. Based on molecular analysis, we further demonstrated that the velvet family proteins VelB and VeA were indispensable for IPT toxicity and the deformation of the VelB-VeA-LaeA complex played a vital role for the low IPT-resistance in M. oryzae, most likely through the down-regulation of the secondary metabolism-related genes or CYP450 genes to reduce the toxicity of IPT.


Assuntos
Ascomicetos , Magnaporthe , Oryza , Magnaporthe/genética , Tiofenos , Oryza/genética , Doenças das Plantas
2.
J Neurochem ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38533619

RESUMO

Though previous studies revealed the potential associations of elevated levels of plasma fibrinogen with dementia, there is still limited understanding regarding the influence of Alzheimer's disease (AD) biomarkers on these associations. We sought to investigate the interrelationships among fibrinogen, cerebrospinal fluid (CSF) AD biomarkers, and cognition in non-demented adults. We included 1996 non-demented adults from the Chinese Alzheimer's Biomarker and LifestylE (CABLE) study and 337 from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The associations of fibrinogen with AD biomarkers and cognition were explored using multiple linear regression models. The mediation analyses with 10 000 bootstrapped iterations were conducted to explore the mediating effects of AD biomarkers on cognition. In addition, interaction analyses and subgroup analyses were conducted to assess the influence of covariates on the relationships between fibrinogen and AD biomarkers. Participants exhibiting low Aß42 were designated as A+, while those demonstrating high phosphorylated tau (P-tau) and total tau (Tau) were labeled as T+ and N+, respectively. Individuals with normal measures of Aß42 and P-tau were categorized as the A-T- group, and those with abnormal levels of both Aß42 and P-tau were grouped under A+T+. Fibrinogen was higher in the A+ subgroup compared to that in the A- subgroup (p = 0.026). Fibrinogen was higher in the A+T+ subgroup compared to that in the A-T- subgroup (p = 0.011). Higher fibrinogen was associated with worse cognition and Aß pathology (all p < 0.05). Additionally, the associations between fibrinogen and cognition were partially mediated by Aß pathology (mediation proportion range 8%-28%). Interaction analyses and subgroup analyses showed that age and ApoE ε4 affect the relationships between fibrinogen and Aß pathology. Fibrinogen was associated with both cognition and Aß pathology. Aß pathology may be a critical mediator for impacts of fibrinogen on cognition.

3.
BMC Plant Biol ; 24(1): 101, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38331759

RESUMO

BACKGROUND: The cultivation of bananas encounters substantial obstacles, particularly due to the detrimental effects of cold stress on their growth and productivity. A potential remedy that has gained attention is the utilization of ethyl mesylate (EMS)-induced mutagenesis technology, which enables the creation of a genetically varied group of banana mutants. This complex procedure entails subjecting the mutants to further stress screening utilizing L-Hyp in order to identify those exhibiting improved resistance to cold. This study conducted a comprehensive optimization of the screening conditions for EMS mutagenesis and L-Hyp, resulting in the identification of the mutant cm784, which exhibited remarkable cold resistance. Subsequent investigations further elucidated the physiological and transcriptomic responses of cm784 to low-temperature stress. RESULTS: EMS mutagenesis had a substantial effect on banana seedlings, resulting in modifications in shoot and root traits, wherein a majority of seedlings exhibited delayed differentiation and limited elongation. Notably, mutant leaves displayed altered biomass composition, with starch content exhibiting the most pronounced variation. The application of L-Hyp pressure selection aided in the identification of cold-resistant mutants among seedling-lethal phenotypes. The mutant cm784 demonstrated enhanced cold resistance, as evidenced by improved survival rates and reduced symptoms of chilling injury. Physiological analyses demonstrated heightened activities of antioxidant enzymes and increased proline production in cm784 when subjected to cold stress. Transcriptome analysis unveiled 946 genes that were differentially expressed in cm784, with a notable enrichment in categories related to 'Carbohydrate transport and metabolism' and 'Secondary metabolites biosynthesis, transport, and catabolism'. CONCLUSION: The present findings provide insights into the molecular mechanisms that contribute to the heightened cold resistance observed in banana mutants. These mechanisms encompass enhanced carbohydrate metabolism and secondary metabolite biosynthesis, thereby emphasizing the adaptive strategies employed to mitigate the detrimental effects induced by cold stress.


Assuntos
Musa , Musa/metabolismo , Metanossulfonato de Etila/metabolismo , Metanossulfonato de Etila/farmacologia , Biomassa , Perfilação da Expressão Gênica , Mutagênese , Fenótipo , Temperatura Baixa , Regulação da Expressão Gênica de Plantas
4.
J Neuroinflammation ; 21(1): 43, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317227

RESUMO

Glaucoma is a complex neurodegenerative disorder characterized by the progressive loss of retinal ganglion cells (RGC) and optic nerve axons, leading to irreversible visual impairment. Despite its clinical significance, the underlying mechanisms of glaucoma pathogenesis remain poorly understood. In this study, we aimed to unravel the multifaceted nature of glaucoma by investigating the interaction between T cells and retinas. By utilizing clinical samples, murine glaucoma models, and T cell transfer models, we made several key findings. Firstly, we observed that CD4+ T cells from glaucoma patients displayed enhanced activation and a bias towards T helper (Th) 1 responses, which correlated with visual impairment. Secondly, we identified the infiltration of Th1 cells into the retina, where they targeted RGC and integrated into the pro-inflammatory glial network, contributing to progressive RGC loss. Thirdly, we discovered that circulating Th1 cells upregulated vascular cell adhesion protein 1 (VCAM-1) on retinal microvessels, facilitating their entry into the neural retina. Lastly, we found that Th1 cells underwent functional reprogramming before reaching the retina, acquiring a phenotype associated with lymphocyte migration and neurodegenerative diseases. Our study provides novel insights into the role of peripheral CD4+ T cells in glaucoma pathogenesis, shedding light on the mechanisms underlying their infiltration into the retina and offering potential avenues for innovative therapeutic interventions in this sight-threatening disease.


Assuntos
Glaucoma , Células Ganglionares da Retina , Humanos , Camundongos , Animais , Células Ganglionares da Retina/patologia , Molécula 1 de Adesão de Célula Vascular/metabolismo , Células Th1/patologia , Glaucoma/metabolismo , Retina/patologia , Transtornos da Visão/patologia , Modelos Animais de Doenças
5.
Small ; 20(26): e2308527, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38221686

RESUMO

Flexible hydroelectric generators (HEGs) are promising self-powered devices that spontaneously derive electrical power from moisture. However, achieving the desired compatibility between a continuous operating voltage and superior current density remains a significant challenge. Herein, a textile-based van der Waals heterostructure is rationally designed between conductive 1T phase tungsten disulfide@carbonized silk (1T-WS2@CSilk) and carbon black@cotton (CB@Cotton) fabrics with an asymmetric distribution of oxygen-containing functional groups, which enhances the proton concentration gradients toward high-performance wearable HEGs. The vertically staggered 1T-WS2 nanosheet arrays on the CSilk fabric provide abundant hydrophilic nanochannels for rapid carrier transport. Furthermore, the moisture-induced primary battery formed between the active aluminum (Al) electrode and the conductive textiles introduces the desired electric field to facilitate charge separation and compensate for the decreased streaming potential. These devices exhibit a power density of 21.6 µW cm-2, an open-circuit voltage (Voc) of 0.65 V sustained for over 10 000 s, and a current density of 0.17 mA cm-2. This performance makes them capable of supplying power to commercial electronics and human respiratory monitoring. This study presents a promising strategy for the refined design of wearable electronics.

6.
Inorg Chem ; 63(13): 5945-5951, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38502918

RESUMO

Alkali-metal rare-earth carbonates (ARECs) find great potential in nonlinear optical applications. As the most common method, the hydrothermal reaction is widely used in synthesizing ARECs. The black-box nature of the hydrothermal reaction makes it difficult for understanding the formation processes and therefore may slow down the pace of structural discovery. Here, by simply soaking the rare-earth carbonates in Na2CO3 solutions, we successfully obtain a series of noncentrosymmetric Na3RE(CO3)3·6H2O (RE = Tb 1, Sm 2, Eu 3, Gd 4, Dy 5, Ho 6, and Er 7) compounds without using the high-temperature hydrothermal method. The transformation process, investigated by powder X-ray diffraction and scanning electron microscopy, is governed by the concentration of the soaking solutions. Na3Tb(CO3)3·6H2O, as an example, is studied structurally, and its physical properties are characterized. It exhibits a second harmonic generation effect of 0.5 × KDP and a short UV cutoff edge of 222 nm (5.8 eV). Our study provides insights for exploring new AREC structures, which may further advance the development of carbonate nonlinear optical crystals.

7.
Neuroradiology ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38676749

RESUMO

PURPOSE: The Centiloid project helps calibrate the quantitative amyloid-ß (Aß) load into a unified Centiloid (CL) scale that allows data comparison across multi-site. How the smaller regional amyloid converted into CL has not been attempted. We first aimed to express regional Aß deposition in CL using [18F]Flutemetamol and evaluate regional Aß deposition in CL with that in standardized uptake value ratio (SUVr). Second, we aimed to determine the presence or absence of focal Aß deposition by measuring regional CL in equivocal cases showing negative global CL. METHODS: Following the Centiloid project pipeline, Level-1 replication, Level-2 calibration, and quality control were completed to generate corresponding Centiloid conversion equations to convert SUVr into Centiloid at regional levels. In equivocal cases, the regional CL was compared with visual inspection to evaluate regional Aß positivity. RESULTS: 14 out of 16 regional conversions from [18F]Flutemetamol SUVr to Centiloid successfully passed the quality control, showing good reliability and relative variance, especially precuneus/posterior cingulate and prefrontal regions with good stability for Centiloid scaling. The absence of focal Aß deposition could be detected by measuring regional CL, showing a high agreement rate with visual inspection. The regional Aß positivity in the bilateral anterior cingulate cortex was most prevalent in equivocal cases. CONCLUSION: The expression of regional brain Aß deposition in CL with [18F]Flutemetamol has been attempted in this study. Equivocal cases had focal Aß deposition that can be detected by measuring regional CL.

8.
Angew Chem Int Ed Engl ; 63(7): e202315325, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38155608

RESUMO

An atom- and step-economical and redox-neutral cascade reaction enabled by asymmetric bimetallic relay catalysis by merging a ruthenium-catalyzed asymmetric borrowing-hydrogen reaction with copper-catalyzed asymmetric Michael addition has been realized. A variety of highly functionalized 2-amino-5-hydroxyvaleric acid esters or peptides bearing 1,4-non-adjacent stereogenic centers have been prepared in high yields with excellent enantio- and diastereoselectivity. Judicious selection and rational modification of the Ru catalysts with careful tuning of the reaction conditions played a pivotal role in stereoselectivity control as well as attenuating undesired α-epimerization, thus enabling a full complement of all four stereoisomers that were otherwise inaccessible in previous work. Concise asymmetric stereodivergent synthesis of the key intermediates for biologically important chiral molecules further showcases the synthetic utility of this methodology.


Assuntos
Cobre , Rutênio , Aminoácidos/química , Catálise , Cobre/química , Peptídeos , Estereoisomerismo
9.
Cerebrovasc Dis ; 52(4): 376-386, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36599326

RESUMO

INTRODUCTION: Due to anatomical and functional similarities in microvascular beds, the brain and kidney share distinctive susceptibilities to vascular injury and common risk factors of small vessel disease. The aim of this updated meta-analysis is to explore the association between kidney function and the burden of cerebral small vessel disease (CSVD). METHODS: PubMed, EMBASE, and Cochrane Library were systematically searched for observational studies that explored the association between the indicators of kidney function and CSVD neuroimaging markers. The highest-adjusted risk estimates and their 95% confidence intervals (CIs) were aggregated using random-effect models. RESULTS: Twelve longitudinal studies and 51 cross-sectional studies with 57,030 subjects met the inclusion criteria of systematic review, of which 52 were included in quantitative synthesis. According to the pooled results, we found that low estimated glomerular filtration rate (eGFR <60 mL/min/1.73 m2) was associated with cerebral microbleeds (odds ratio (OR) = 1.55, 95% CI = 1.26-1.90), white matter hyperintensities (OR = 1.40, 95% CI = 1.05-1.86), and lacunar infarctions (OR = 1.50, 95% CI = 1.18-1.92), but not with severe perivascular spaces (OR = 1.20, 95% CI = 0.77-1.88). Likewise, patients with proteinuria (OR = 1.75, 95% CI = 1.47-2.09) or elevated serum cystatin C (OR = 1.51, 95% CI = 1.25-1.83) also had an increased risk of CSVD. CONCLUSION: The association between kidney function and CSVD has been comprehensively updated through this study, that kidney insufficiency manifested as low eGFR, proteinuria, and elevated serum cystatin C was independently associated with CSVD burden.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Cistatina C , Humanos , Estudos Transversais , Imageamento por Ressonância Magnética , Doenças de Pequenos Vasos Cerebrais/complicações , Rim , Proteinúria/complicações
10.
Acta Pharmacol Sin ; 44(4): 801-810, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36216899

RESUMO

Necroptosis is a form of regulated necrosis involved in various pathological diseases. The process of necroptosis is controlled by receptor-interacting kinase 1 (RIPK1), RIPK3, and pseudokinase mixed lineage kinase domain-like protein (MLKL), and pharmacological inhibition of these kinases has been shown to have therapeutic potentials in a variety of diseases. In this study, using drug repurposing strategy combined with high-throughput screening (HTS), we discovered that AZD4547, a previously reported FGFR inhibitor, is able to interfere with necroptosis through direct targeting of RIPK1 kinase. In both human and mouse cell models, AZD4547 blocked RIPK1-dependent necroptosis. In addition, AZD4547 rescued animals from TNF-induced lethal shock and inflammatory responses. Together, our study demonstrates that AZD4547 is a potent and selective inhibitor of RIPK1 with therapeutic potential for the treatment of inflammatory disorders that involve necroptosis.


Assuntos
Necroptose , Proteínas Quinases , Camundongos , Animais , Humanos , Proteínas Quinases/metabolismo , Reposicionamento de Medicamentos , Apoptose , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
11.
Environ Res ; 216(Pt 2): 114625, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36279915

RESUMO

An innovative design of microbial electrolytic reactor (MER) coupled with Ipomoea aquaticaForsk. plant microbial fuel cell (IAF-PMFC) was developed for azo dye wastewater treatment and electricity generation. This study aims to assess the sequential degradation of azo dye and the feasibility of energy self-sufficiency in the MER/IAF-PMFC system. The decomposition of azo dye into aromatic amines and dye decolorization occurred in the MER at high hydraulic loading of 0.28 m3/(m2·d), while dye intermediates were mainly mineralized in the IAF-PMFC at low hydraulic loading of 0.06 m3/(m2·d). The final decolorization efficiency and COD removal of the combined system reached 99.64% and 92.06% respectively, even at influent dye concentration of 1000 mg/L. The effects of open/closed circuit conditions, presence/absence of aquatic plant and different cathode areas on the performance of the IAF-PMFC for treating the effluent of the MER were systematically tested, and the results showed that closed-circuit condition, plant involvement and larger cathode area were more beneficial to decolorization, detoxification and mineralization of dye wastewater, bioelectricity output, plant growth and photosynthetic rate. The power consumption by the MER was 0.0163 kWh/m3 of dye wastewater, while the highest power generation of the IAF-PMFC reached 0.0183 kWh/m3. The current efficiency of the MER for dye decolorization was as high as 942.83%, while the maximum coulombic efficiency of the IAF-PMFC for intermediates metabolism was only 6.30%, which still had much space of bioelectricity generation promotion. The MER/IAF-PMFC technology can simultaneously realize refractory wastewater treatment and balance of electricity production and consumption.


Assuntos
Fontes de Energia Bioelétrica , Purificação da Água , Compostos Azo , Águas Residuárias , Purificação da Água/métodos , Eletrólise , Eletricidade , Plantas
12.
Cell Mol Life Sci ; 79(12): 585, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36348101

RESUMO

Alzheimer's disease (AD) is the most common neurodegenerative disorders presenting with the pathological hallmarks of amyloid plaques and tau tangles. Over the past few years, great efforts have been made to explore reliable biomarkers of AD. High-throughput omics are a technology driven by multiple levels of unbiased data to detect the complex etiology of AD, and it provides us with new opportunities to better understand the pathophysiology of AD and thereby identify potential biomarkers. Through revealing the interaction networks between different molecular levels, the ultimate goal of multi-omics is to improve the diagnosis and treatment of AD. In this review, based on the current AD pathology and the current status of AD diagnostic biomarkers, we summarize how genomics, transcriptomics, proteomics and metabolomics are all conducing to the discovery of reliable AD biomarkers that could be developed and used in clinical AD management.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Metabolômica , Biomarcadores , Proteômica , Genômica
13.
J Assist Reprod Genet ; 40(1): 3-17, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36508034

RESUMO

The placenta is essential for a successful pregnancy and healthy intrauterine development in mammals. During human pregnancy, the growth and development of the placenta are inseparable from the rapid proliferation, invasion, and migration of trophoblast cells. Previous reports have shown that the occurrence of many pregnancy disorders may be closely related to the dysfunction of trophoblasts. However, the function regulation of human trophoblast cells in the placenta is poorly understood. Therefore, studying the factors that regulate the function of trophoblast cells is necessary. MicroRNAs (miRNAs) are small, non-coding, single-stranded RNA molecules. Increasing evidence suggests that miRNAs play a crucial role in regulating trophoblast functions. This review outlines the role of miRNAs in regulating the function of trophoblast cells and several common signaling pathways related to miRNA regulation in pregnancy disorders.


Assuntos
MicroRNAs , Complicações na Gravidez , Trofoblastos , Feminino , Humanos , Gravidez , Linhagem Celular , Proliferação de Células/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Placenta/metabolismo , Trofoblastos/metabolismo
14.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(1): 54-60, 2023 Jan.
Artigo em Zh | MEDLINE | ID: mdl-36647643

RESUMO

Oral microbiota have a complex impact on the host's health and disease states. It has been found that the composition of lung flora bears a striking resemblance to the composition of oral flora. Moreover, oral pathogenic bacteria have been detected in the sputum and bronchoalveolar lavage fluid of patients with chronic obstructive pulmonary disease (COPD), suggesting that oral microbiota play an important role in the pathogenesis and development of COPD. Findings from lots of studies have shown that oral microbiota may participate in the pathogenesis and development of COPD through non-specific immune response, specific immune response, and the activities of protein hydrolase. Herein, we mainly summarized the available evidence on the relationship between oral microbiota and COPD. By examining the relationship between the two, we elaborated on the application of oral microbiota in the diagnosis and prevention of COPD, discussed possible directions for future research, and provided references for developing new therapeutic approaches.


Assuntos
Microbiota , Doença Pulmonar Obstrutiva Crônica , Humanos , Pulmão/patologia , Microbiota/fisiologia , Líquido da Lavagem Broncoalveolar , Escarro/microbiologia , Bactérias
15.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(1): 97-101, 2023 Jan.
Artigo em Zh | MEDLINE | ID: mdl-36647650

RESUMO

Objective: To analyze the influencing factors of dentition defect in people with type 2 diabetes mellitus (T2DM) and periodontitis and to provide evidence-based support for improving the oral health and quality of life of T2DM patients. Methods: A total of 169 patients with T2DM and periodontitis were selected by convenience sampling. According to the number of remaining teeth, the subjects were divided into two groups, group A (number of remaining teeth in the mouth≥20, n=115) and group B (the number of remaining teeth in the mouth<20, n=54). Questionnaire surveys, systemic and oral examinations, and laboratory blood tests were performed. Systematic influencing factors of dentition defect in people with T2DM and periodontitis were analyzed with logistic regression. Results: Compared with patients in group A, patients in group B had higher findings in age, systolic blood pressure (SBP), prevalence of coronary heart disease and hyperlipidemia, glycosylated hemoglobin (HbA1c), periodontal probing depth (PD), and clinical attachment loss (CAL). Furthermore, their behaviors and awareness of oral health were not as good as those of patients in group A. Logistic regression showed that age, HbA1c, and SBP were independent risk factors for the number of remaining teeth in the mouth <20 among T2DM patients with periodontitis ( P<0.05). Conclusion: Increasing age, lower HbA1c, and increased SBP are the most important influencing factors for the number of remaining teeth in the mouth <20 in T2DM patients with periodontitis. Clinical practitioners should give more attention to the general health status of the patients and strengthen health education, thereby improving patients' quality.


Assuntos
Diabetes Mellitus Tipo 2 , Periodontite , Humanos , Diabetes Mellitus Tipo 2/complicações , Hemoglobinas Glicadas , Dentição , Qualidade de Vida , Periodontite/complicações
16.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(1): 91-96, 2023 Jan.
Artigo em Zh | MEDLINE | ID: mdl-36647649

RESUMO

Objective: To analyze the salivary peptide profiles of patients with periodontitis (PD) and chronic obstructive pulmonary disease (COPD), to identify differentially expressed peptides that are associated with diseases, to explore for biomarkers with potential diagnostic significance, and to probe for new perspectives for the early prevention and treatment of COPD. Methods: A total of 10 PD patients (the PD group), 10 PD patients with COPD (the PD plus COPD group), and 8 healthy controls (the Control group) were selected for the study. The clinical data and saliva samples of the subjects were collected. Salivary supernatant samples were separated and purified with weak-cation-exchange magnetic bead-based (WCX-MB). With matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS), the biodata of the samples were obtained and differential salivary peptide profiling was conducted to screen for peptides exhibiting inter-group differences. In addition, all the differentially expressed peptides were examined and verified with liquid chromatography tandem mass spectrometry (LC-MS/MS). Result: An average of 77 peptide mass peaks were detected among three groups, the peaks intensities differed significantly for 10 peptides between PD patients and PD patients with COPD. Among them, eight peptides (1193.5, 1836.2, 1735.1, 1321.3, 1356.8, 2086.8, 1863.6, and 2230.9) showed increased expression and two peptides (1067.3 and 1124.4) showed decreased expression in the PD plus COPD group, in comparison with the PD group. Among the 10 differential peptides, 1193.5 and 1356.8 were identified as histidine-rich protein-1, submaxillary gland androgen-regulated protein 3B, and salivary acidic proline-rich protein 1/2. Conclusion: With WCX-MB and MALDI-TOF-MS, we have identified, from the saliva of patients with concomitant PD and COPD, differentially expressed salivary peptides that were associated with diseases. The differentially expressed peptides thus screened out show promises for being used as auxiliary biomarkers for early diagnosis of COPD.


Assuntos
Periodontite , Doença Pulmonar Obstrutiva Crônica , Humanos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Proteínas e Peptídeos Salivares , Biomarcadores
17.
BMC Neurol ; 22(1): 59, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35172755

RESUMO

BACKGROUND: Genetic variations in the inflammatory Caspase-1 gene have been shown associated with cognitive function in elderly individuals and in predisposition to Alzheimer's disease (AD), but its detailed mechanism before the typical AD onset was still unclear. Our current study evaluated the impact of Caspase-1 common variant rs554344 on the pathological processes of brain amyloidosis, tauopathy, and neurodegeneration. METHODS: Data used in our study were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. We examined the relationship between Caspase-1 rs554344 allele carrier status with AD-related cerebrospinal fluid (CSF), PET, and MRI measures at baseline by using a multiple linear regression model. We also analyzed the longitudinal effects of this variant on the change rates of CSF biomarkers and imaging data using a mixed effect model. RESULTS: We found that Caspase-1 variant was significantly associated with FDG PET levels and CSF t-tau levels at baseline in total non-demented elderly group, and especially in mild cognitive impairment (MCI) subgroup. In addition, this variant was also detected associated with CSF p-tau levels in MCI subgroup. The mediation analysis showed that CSF p-tau partially mediated the association between Caspase-1 variant and CSF t-tau levels, accounting for 80% of the total effect. CONCLUSIONS: Our study indicated a potential role of Caspase-1 variant in influencing cognitive function might through changing tau related-neurodegeneration process.


Assuntos
Doença de Alzheimer , Caspase 1 , Disfunção Cognitiva , Idoso , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Caspase 1/genética , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/genética , Fluordesoxiglucose F18 , Humanos , Neuroimagem , Proteínas tau/líquido cefalorraquidiano , Proteínas tau/genética
18.
Oral Dis ; 28(6): 1652-1661, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34387017

RESUMO

OBJECTIVE: To investigate the expression of triggering receptor expressed on myeloid cells 2 (TREM-2) in the healthy and diseased tissue, including gingivitis or periodontitis, and then to assess whether it has an impact on the development of periodontitis. METHODS AND MATERIALS: The gingival tissues from healthy controls, gingivitis, and periodontitis underwent hematoxylin-eosin and immunohistochemical staining, and the association of TREM-2 expression or TREM-2+ cell counts with clinical parameters was assessed. An anti-TREM-2 antibody was used to block the osteoclastogenesis in vitro and during the experimental periodontitis by injection into the gingiva. The relative gene expression of TREM-2 in different gingival tissues was analyzed by quantitative PCR. RESULTS: In the gingival tissues of periodontitis, TREM-2 expression and TREM-2+ cell counts were significantly higher than those of gingivitis and healthy controls (p<0.05). In the group of periodontitis showing moderate signs, the gingival tissues displayed significantly lower TREM-2 expression, in contrast with the group with advanced periodontal symptoms (p < 0.05). Consistently, blocking TREM-2 significantly decreased osteoclast formation both in vitro and in vivo (p < 0.05). CONCLUSION: Increased TREM-2 expression and TREM-2+ cells were positively associated with the development of periodontitis. Osteoclast differentiation and stimulating alveolar bone loss were partly relied on TREM-2, which could be a target to be blocked for attenuating osteoclastogenesis in periodontitits.


Assuntos
Perda do Osso Alveolar , Gengivite , Periodontite , Proteínas de Transporte , Humanos , Células Mieloides/metabolismo , Osteoclastos/metabolismo , Periodontite/metabolismo
19.
Int J Mol Sci ; 23(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36232737

RESUMO

Cadmium (Cd) is a toxic heavy metal and worldwide environmental pollutant which seriously threatens human health and ecosystems. It is easy to be adsorbed and deposited in organisms, exerting adverse effects on various organs including the brain. In a very recent study, making full use of a zebrafish model in both high-throughput behavioral tracking and live neuroimaging, we explored the potential developmental neurotoxicity of Cd2+ at environmentally relevant levels and identified multiple connections between Cd2+ exposure and neurodevelopmental disorders as well as microglia-mediated neuroinflammation, whereas the underlying neurotoxic mechanisms remained unclear. The canonical Wnt/ß-catenin signaling pathway plays crucial roles in many biological processes including neurodevelopment, cell survival, and cell cycle regulation, as well as microglial activation, thereby potentially presenting one of the key targets of Cd2+ neurotoxicity. Therefore, in this follow-up study, we investigated the implication of the Wnt/ß-catenin signaling pathway in Cd2+-induced developmental disorders and neuroinflammation and revealed that environmental Cd2+ exposure significantly affected the expression of key factors in the zebrafish Wnt/ß-catenin signaling pathway. In addition, pharmacological intervention of this pathway via TWS119, which can increase the protein level of ß-catenin and act as a classical activator of the Wnt signaling pathway, could significantly repress the Cd2+-induced cell cycle arrest and apoptosis, thereby attenuating the inhibitory effects of Cd2+ on the early development, behavior, and activity, as well as neurodevelopment of zebrafish larvae to a certain degree. Furthermore, activation and proliferation of microglia, as well as the altered expression profiles of genes associated with neuroimmune homeostasis triggered by Cd2+ exposure could also be significantly alleviated by the activation of the Wnt/ß-catenin signaling pathway. Thus, this study provided novel insights into the cellular and molecular mechanisms of Cd2+ toxicity on the vertebrate central nervous system (CNS), which might be helpful in developing pharmacotherapies to mitigate the neurological disorders resulting from exposure to Cd2+ and many other environmental heavy metals.


Assuntos
Cádmio , Poluentes Ambientais , Doenças Neuroinflamatórias , Síndromes Neurotóxicas , Via de Sinalização Wnt , Animais , Cádmio/toxicidade , Ecossistema , Poluentes Ambientais/farmacologia , Seguimentos , Neuroimagem , Doenças Neuroinflamatórias/induzido quimicamente , Síndromes Neurotóxicas/etiologia , Peixe-Zebra/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
20.
J Integr Plant Biol ; 64(6): 1145-1156, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35419850

RESUMO

Current gene delivery methods for maize are limited to specific genotypes and depend on time-consuming and labor-intensive tissue culture techniques. Here, we report a new method to transfect maize that is culture-free and genotype independent. To enhance efficiency of DNA entry and maintain high pollen viability of 32%-55%, transfection was performed at cool temperature using pollen pretreated to open the germination aperture (40%-55%). Magnetic nanoparticles (MNPs) coated with DNA encoding either red fluorescent protein (RFP), ß-glucuronidase gene (GUS), enhanced green fluorescent protein (EGFP) or bialaphos resistance (bar) was delivered into pollen grains, and female florets of maize inbred lines were pollinated. Red fluorescence was detected in 22% transfected pollen grains, and GUS stained 55% embryos at 18 d after pollination. Green fluorescence was detected in both silk filaments and immature kernels. The T1 generation of six inbred lines showed considerable EGFP or GUS transcripts (29%-74%) quantitated by polymerase chain reaction, and 5%-16% of the T1 seedlings showed immunologically active EGFP or GUS protein. Moreover, 1.41% of the bar transfected T1 plants were glufosinate resistant, and heritable bar gene was integrated into the maize genome effectively as verified by DNA hybridization. These results demonstrate that exogenous DNA could be delivered efficiently into elite maize inbred lines recalcitrant to tissue culture-mediated transformation and expressed normally through our genotype-independent pollen transfection system.


Assuntos
Nanopartículas de Magnetita , Zea mays , DNA , Genótipo , Plantas Geneticamente Modificadas/genética , Pólen/genética , Zea mays/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA