Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 143(47): 19881-19892, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34788029

RESUMO

Colloidal micromotors can autonomously propel due to their broken symmetry that leads to unbalanced local mechanical forces. Most commonly, micromotors are synthesized to possess a Janus structure or its variants, having two components distinct in shape, composition, or surface joined together on opposite sides. Here, we report on an alternative approach for creating micromotors, where microcrystals of metal-organic frameworks (MOFs) with various polyhedral shapes are propelled under an AC electric field. In these cases, symmetry breaking is realized by orienting the polyhedral particles in a unique direction to generate uneven electrohydrodynamic flow. The particle orientations are controlled by a delicate competition between the electric and gravitational forces exerted on the particle, which we rationalize using experiments and a theoretical model. Furthermore, by leveraging the MOF types and shapes, or surface properties, we show that the propulsion of MOF motors can be tuned or reversed. Because of the flexibility in designing MOFs and their one-step scalable synthesis, our strategy is simple yet versatile for making well-defined functional micromotors.

2.
J Am Chem Soc ; 141(37): 14853-14863, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31448592

RESUMO

Controlling the complex dynamics of active colloids-the autonomous locomotion of colloidal particles and their spontaneous assembly-is challenging yet crucial for creating functional, out-of-equilibrium colloidal systems potentially useful for nano- and micromachines. Herein, by introducing the synthesis of active "patchy" colloids of various low-symmetry shapes, we demonstrate that the dynamics of such systems can be precisely tuned. The low-symmetry patchy colloids are made in bulk via a cluster-encapsulation-dewetting method. They carry essential information encoded in their shapes (particle geometry, number, size, and configurations of surface patches, etc.) that programs their locomotive and assembling behaviors. Under AC electric field, we show that the velocity of particle propulsion and the ability to brake and steer can be modulated by having two asymmetrical patches with various bending angles. The assembly of monopatch particles leads to the formation of dynamic and reconfigurable structures such as spinners and "cooperative swimmers" depending on the particle's aspect ratios. A particle with two patches of different sizes allows for "directional bonding", a concept popular in static assemblies but rare in dynamic ones. With the capability to make tunable and complex shapes, we anticipate the discovery of a diverse range of new dynamics and structures when other external stimuli (e.g., magnetic, optical, chemical, etc.) are employed and spark synergy with shapes.

3.
ACS Nano ; 18(22): 14231-14243, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38781460

RESUMO

Ultrasmall nanomotors (<100 nm) are highly desirable nanomachines for their size-specific advantages over their larger counterparts in applications spanning nanomedicine, directed assembly, active sensing, and environmental remediation. While there are extensive studies on motors larger than 100 nm, the design and understanding of ultrasmall nanomotors have been scant due to the lack of high-resolution imaging of their propelled motions with orientation and shape details resolved. Here, we report the imaging of the propelled motions of catalytically powered ultrasmall nanomotors─hundreds of them─at the nanometer resolution using liquid-phase transmission electron microscopy. These nanomotors are Pt nanoparticles of asymmetric shapes ("tadpoles" and "boomerangs"), which are colloidally synthesized and observed to be fueled by the catalyzed decomposition of NaBH4 in solution. Statistical analysis of the orientation and position trajectories of fueled and unfueled motors, coupled with finite element simulation, reveals that the shape asymmetry alone is sufficient to induce local chemical concentration gradient and self-diffusiophoresis to act against random Brownian motion. Our work elucidates the colloidal design and fundamental forces involved in the motions of ultrasmall nanomotors, which hold promise as active nanomachines to perform tasks in confined environments such as drug delivery and chemical sensing.

4.
ACS Nano ; 17(10): 9622-9632, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37134301

RESUMO

Hydrogels capable of transforming in response to a magnetic field hold great promise for applications in soft actuators and biomedical robots. However, achieving high mechanical strength and good manufacturability in magnetic hydrogels remains challenging. Here, inspired by natural load-bearing soft tissues, a class of composite magnetic hydrogels is developed with tissue-mimetic mechanical properties and photothermal welding/healing capability. In these hydrogels, a hybrid network involving aramid nanofibers, Fe3O4 nanoparticles, and poly(vinyl alcohol) is accomplished by a stepwise assembly of the functional components. The engineered interactions between nanoscale constituents enable facile materials processing and confer a combination of excellent mechanical properties, magnetism, water content, and porosity. Furthermore, the photothermal property of Fe3O4 nanoparticles organized around the nanofiber network allows near-infrared welding of the hydrogels, providing a versatile means to fabricate heterogeneous structures with custom designs. Complex modes of magnetic actuation are made possible with the manufactured heterogeneous hydrogel structures, suggesting opportunities for further applications in implantable soft robots, drug delivery systems, human-machine interactions, and other technologies.

5.
Adv Mater ; 34(50): e2207350, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36222392

RESUMO

Kirigami designs are advantageous for the construction of wearable electronics due to their high stretchability and conformability on the 3D dynamic surfaces of the skin. However, suitable materials technologies that enable robust kirigami devices with desired functionality for skin-interfaces remain limited. Here, a versatile materials platform based on a composite nanofiber framework (CNFF) is exploited for the engineering of wearable kirigami electronics. The self-assembled fibrillar network involving aramid nanofibers and poly(vinyl alcohol) combines high toughness, permeability, and manufacturability, which are desirable for the fabrication of hybrid devices. Multiscale simulations are conducted to explain the high fracture resistance of the CNFF-based kirigami structures and provide essential guidance for the design, which can be further generalized to other kirigami devices. Various microelectronic sensors and electroactive polymers are integrated onto a CNFF-based materials platform to achieve electrocardiogram (ECG), electromyogram (EMG), skin-temperature measurements, and measurement of other physiological parameters. These mechanically robust, multifunctional, lightweight, and biocompatible kirigami devices can shed new insights for the development of advanced wearable systems and human-machine interfaces.


Assuntos
Nanofibras , Dispositivos Eletrônicos Vestíveis , Humanos , Eletrônica , Polímeros/química
6.
ACS Nano ; 15(3): 5439-5448, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33635049

RESUMO

Colloidal particles with surface patches can self-assemble with high directionality, but the resulting assemblies cannot reconfigure unless the patch arrangement (number, symmetry, etc.) is altered. While external fields with tunable inputs can guide the assembly of dynamic structures, they encourage particle alignment relative to its shape rather than the surface patterns. Here, we report on the synthesis of metallodielectric patchy particles and their assembly under the AC electric field, which gives rise to a series of structures including two-layer alternating chains, open-brick walls, staggering stacks, and vertical chains that are directed by the patches yet reconfigurable by the field. The configurations of the assemblies (e.g., the chains) can be further switched between a rigid and a flexible state emulating the conformations of polymers. Our work suggests that, for directed colloidal assembly, the particle complexities (patches and shapes) can be coupled with the external manipulations in a cooperative manner for creating materials with precise yet reconfigurable structures.

7.
Nat Commun ; 11(1): 2670, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32471993

RESUMO

The assembly of active and self-propelled particles is an emerging strategy to create dynamic materials otherwise impossible. However, control of the complex particle interactions remains challenging. Here, we show that various dynamic interactions of active patchy particles can be orchestrated by tuning the particle size, shape, composition, etc. This capability is manifested in establishing dynamic colloidal bonds that are highly selective and directional, which greatly expands the spectrum of colloidal structures and dynamics by assembly. For example, we demonstrate the formation of colloidal molecules with tunable bond angles and orientations. They exhibit controllable propulsion, steering, reconfiguration as well as other dynamic behaviors that collectively reflect the bond properties. The working principle is further extended to the co-assembly of synthetic particles with biological entities including living cells, giving rise to hybrid colloidal molecules of various types, for example, a colloidal carrousel structure. Our strategy should enable active systems to perform sophisticated tasks in future such as selective cell treatment.


Assuntos
Coloides/química , Condutividade Elétrica , Interações de Partículas Elementares , Escherichia coli/química , Ciência dos Materiais/métodos , Estrutura Molecular , Nanoestruturas/química , Tamanho da Partícula , Leveduras/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA