RESUMO
We prepared an environmentally friendly intelligent Fe3 O4 @PMMA@PDMS superhydrophobic oil-absorbing material with simple process and excellent performance, and investigated the effects of different particle sizes of Fe3 O4 , different concentrations of PDMS, and different heating times on the superhydrophobicity of the coating. The best performance of the coating was achieved at a particle size combination of 20/500â nm for Fe3 O4 , a PDMS to Fe3 O4 @PMMA mass ratio of 6 : 1, and a heating time of 2â min at 400 °C. H2-SPSS coating not only has excellent superhydrophobicity, abrasion resistance, self-cleaning property, and chemical corrosion, but also has good flux and efficiency for separating oil-water mixture, with fluxes of 40,540, 32,432, and 37,027â Lm-2 h-1 for trichloromethane, dichloromethane and bromoethane, respectively, and separation efficiencies of 99.78 %, 99.74 % and 99.73 %, respectively. In addition, we also prepared a superhydrophobic magnetic polyurethane (SPPU) sponge using Fe3 O4 @PMMA@PDMS, which not only has a good oil absorption capacity of 18-44â g/g for different oil substances, it can also move directionally by magnet attraction and absorb oil along a fixed path. Under the control of the magnet, SPPU completes the whole oil absorption process in only 4â s, showing excellent oil absorption and intelligence.
RESUMO
Introduction: Physical fitness has been widely recognized as a powerful marker of health in children and adolescents, and it negatively affected by the COVID-19 pandemic. The construction of world-class universities and first-class disciplines, known as the "Double First-Class" Initiative (DFC), is a major commitment made by the Chinese government to adapt to changes in the educational environment, both domestically and internationally, in order to promote the development and practice of international higher education. The aim of the study was to look deep into the regional differences of physical fitness and overweight and obesity prevalence among college students before and after the COVID-19 pandemic since the DFC. Methods: The original physical fitness parameters of students from 10 DFC universities and colleges in Central South China were downloaded from the official website of Chinese National Student Physical Fitness Database (CNSPFD) and then divided into 3 groups based on the pandemic periods: pre-pandemic (2019), the first year after pandemic outbreak (2020), and the second year after pandemic outbreak (2021). All the data were stored in Excel 2010, analyzed by SPSS 17.0, and plotted with ArcGIS 10.4. Results: The total "fail" percentage (from 9.19% in 2019 to 12.94% in 2021) and the prevalence of overweight and obesity in boys (from 22.53 to 29.25% in 2021) exhibited a continuous increase year by year, and among all the physical fitness indicators the score of strength in boys and endurance quality in all individuals were the lowest in overweight and obesity groups. Students with 'fail' rate developed from northern and northeastern province to southern areas from 2019 to 2021. For grade 2019th, overweight and obesity students who also failed the test had covered nationwide and the most affected areas including northeast, east, as well as central north in senior year. The distribution of overall fitness assessments in Hubei province was in accordance with the national data, and the overall scoring growths in both class of 2021st and 2022nd were measured with a negative increase (p < 0.01). Conclusion: The government and related functional departments should take into consideration the student regional sources, especially in western and northeast regions of China, and school polices and physical education (PE) teachers should pay more attention to put training efforts on endurance for all adolescents and strength for boys and the group of overweight and obesity who also failed in the standard test, when designing specific interventions to promote physical health and counteract the negative effects of COVID-19 pandemic in college students.
Assuntos
COVID-19 , Sobrepeso , Adolescente , Masculino , Criança , Humanos , Sobrepeso/epidemiologia , Pandemias , Prevalência , COVID-19/epidemiologia , Obesidade/epidemiologia , Estudantes , Aptidão Física , China/epidemiologiaRESUMO
With the rapid development of science and technology, superhydrophobic nanomaterials have become one of the hot topics from various subjects. Due to their distinct properties, such as superhydrophobicity, anti-icing and corrosion resistance, superhydrophobic nanomaterials are widely used in industry, agriculture, defense, medicine and other fields. Hence, the development of superhydrophobic materials with superior performance, economical, practical features, and environment-friendly properties are extremely important for industrial development and environmental protection. Aimed to provide a scientific and theoretical basis for the subsequent study on the preparation of composite superhydrophobic nanomaterials, this paper reviewed the latest progress in the research of superhydrophobic surface wettability and the theory of superhydrophobicity, summarized and analyzed the latest development of carbon-based, silicon-based and polymer-based superhydrophobic nanomaterials in terms of their synthesis, modification, properties and structure sizes (diameters), discussed the problems and unique application prospects of carbon-based, silicon-based and polymer-based superhydrophobic nanomaterials.
RESUMO
Fluorine pollution has become one of the key issues of water pollution, and the adsorption materials for efficient removal of fluorine ions have attracted much attention. It is rarely reported that the self-synthesized biomass materials were functionalized by the ß-CD@Ce(NO)3. This paper mainly proposed a new synthetic method of the self-synthesized biomass materials were modified by the ß-CD@Ce(NO)3 and removal of fluorine ions. The effects of this materials on the adsorption efficiency of fluorine ions under different conditions were explored, and the kinetic and thermodynamic simulations were carried out. The results show that the self-synthesized biomass materials were modified by the ß-CD@Ce(NO)3 has significant pore structure, large specific surface area and multi-functional group. Adsorption experiment showed that the reaction reached adsorption equilibrium at 30 min. The removal rate of fluorine ions reached 93.13%, and the fluorine ions adsorption capacity was 37.25 mg/g under neutral conditions. The material can be recycled for more than 5 times, and the adsorption efficiency remains above 94%. The adsorption kinetics accorded with the pseudo second-order model and the adsorption isotherm equation is in line with the Langmuir isotherm adsorption model. PO43- and CO32- have the most impact on fluorine ions adsorption. This method reduces the synthesis cost of high-performance adsorption materials and improves the adsorption performance, which is conducive to the popularization and application in the future.
Assuntos
Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Flúor , Poluentes Químicos da Água/análise , Adsorção , Cinética , Fluoretos , Concentração de Íons de HidrogênioRESUMO
A novel particle electrode based on antimony tailings microspheres was successfully constructed by ultrasonic immersion calcination method, and the degradation of RhB was studied in a three-dimensional electrochemical reactor (3DER). It was characterized by XRD, SEM, EDS, XPS, cyclic voltammetry and linear sweep voltammetry. When the pH value is 5.00, the dosage of Fe/Cu@antimony tailing is 1.50 g/L, the initial concentration is 100 mg/L, and the current density is 20 mA/cm2, the degradation efficiency is the best (99.40% for RhB and 98.81% for TOC) within 15 min. The results show that in the three-dimensional electrochemical oxidation system, electrochemical oxidation and electro Fenton oxidation occur at the same time to cause the increase of hydroxyl radicals. According to LC-MS analysis and EPR characterization, it can be found that the main degradation mechanism of RhB is that hydroxyl radicals continuously attack RhB, and realize rapid degradation of RhB through deethylation, deamination, dealkylation, decarboxylation, chromophore splitting, ring opening and mineralization. Fe/Cu@antimony tailing particles are both electrodes for electrochemical oxidation and catalysts for Fenton oxidation. The degradation effect of RhB remained at 94% after 6 cycles, and the leaching rates of Fe and Cu are only 1.20% and 0.79%, indicating that Fe/Cu@AT had significant stability. This work provides a new insight into the establishment of an efficient and stable three-dimensional electrocatalytic particle electrode.
Assuntos
Antimônio , Poluentes Químicos da Água , Antimônio/análise , Poluentes Químicos da Água/química , Rodaminas/química , Eletrodos , Oxirredução , Radical Hidroxila , Peróxido de Hidrogênio/químicaRESUMO
With the rapid advancement of technology, the wettability of conventional superhydrophobic materials no longer suffice to meet the demands of practical applications. Intelligent responsive superhydrophobic materials have emerged as a highly sought-after material in various fields. The exceptional superhydrophobicity, reversible wetting, and intelligently controllable characteristics of these materials have led to extensive applications across industries, including industry, agriculture, defense, and medicine. Therefore, the development of intelligent superhydrophobic materials with superior performance, economic practicality, enhanced sensitivity, and controllability assumes utmost importance in advancing technology worldwide. This article provides a summary of the wettability principles of superhydrophobic surfaces and the mechanisms behind intelligent responsive superhydrophobicity. Furthermore, it reviews and analyzes the recent research progress on light, electric, and magnetic responsive superhydrophobic materials, encompassing aspects such as material synthesis, modification, performance, and responses under diverse external stimuli. The article also explores the challenges associated with different types of responsive superhydrophobic materials and the unique application prospects of light, electric, and magnetic responsive superhydrophobic materials. Additionally, it outlines the future directions for the development of intelligent responsive superhydrophobic materials.