Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Gastrointest Liver Physiol ; 324(3): G177-G189, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36537709

RESUMO

Small intestinal neuroendocrine tumors (SI-NETs) are serotonin-secreting well-differentiated neuroendocrine tumors of putative enterochromaffin (EC) cell origin. However, EC cell-derived tumorigenesis remains poorly understood. Here, we examined whether the gain of Myc and the loss of RB1 and Trp53 function in EC cells result in SI-NET using tryptophan hydroxylase 1 (TPH1) Cre-ERT2-driven RB1fl Trp53fl MycLSL (RPM) mice. TPH1-Cre-induced gain of Myc and loss of RB1 and Trp53 function resulted in endocrine or neuronal tumors in pancreas, lung, enteric neurons, and brain. Lineage tracing indicated that the cellular origin for these tumors was TPH1-expressing neuroendocrine, neuronal, or their precursor cells in these organs. However, despite that TPH1 is most highly expressed in EC cells of the small intestine, we observed no incidence of EC cell tumors. Instead, the tumor of epithelial cell origin in the intestine was exclusively nonendocrine adenocarcinoma, suggesting dedifferentiation of EC cells into intestinal stem cells (ISCs) as a cellular mechanism. Furthermore, ex vivo organoid studies indicated that loss of functions of Rb1 and Trp53 accelerated dedifferentiation of EC cells that were susceptible to apoptosis with expression of activated MycT58A, suggesting that the rare dedifferentiating cells escaping cell death went on to develop adenocarcinomas. Lineage tracing demonstrated that EC cells in the small intestine were short-lived compared with neuroendocrine or neuronal cells in other organs. In contrast, EC cell-derived ISCs were long-lasting and actively cycling and thus susceptible to transformation. These results suggest that tissue- and cell-specific properties of EC cells such as rapid cell turnover and homeostatic dedifferentiation, affect the fate and rate of tumorigenesis induced by genetic alterations and provide important insights into EC cell-derived tumorigenesis.NEW & NOTEWORTHY Small intestinal neuroendocrine tumors are of putative enterochromaffin (EC) cell origin and are the most common malignancy in the small intestine, followed by adenocarcinoma. However, the tumorigenesis of these tumor types remains poorly understood. The present lineage tracing studies showed that tissue- and cell-specific properties of EC cells such as rapid cell turnover and homeostatic dedifferentiation affect the fate and rate of tumorigenesis induced by genetic alterations toward a rare occurrence of adenocarcinoma.


Assuntos
Adenocarcinoma , Neoplasias Intestinais , Tumores Neuroendócrinos , Camundongos , Animais , Células Enterocromafins/metabolismo , Intestino Delgado/patologia , Carcinogênese/metabolismo , Transformação Celular Neoplásica/metabolismo , Neoplasias Intestinais/metabolismo , Tumores Neuroendócrinos/metabolismo , Adenocarcinoma/genética
2.
J Periodontal Res ; 58(3): 575-587, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36807310

RESUMO

BACKGROUND AND OBJECTIVE: G protein-coupled receptor 40 (GPR40) is a receptor for medium- and long-chain free fatty acids (FFAs). GPR40 activation improves type 2 diabetes mellitus (T2DM), metabolic syndrome (MetS), and the complications of T2DM and MetS. Periodontitis, a common oral inflammatory disease initiated by periodontal pathogens, is another complication of T2DM and MetS. Since FFAs play a key role in the pathogenesis of MetS which exacerbates periodontal inflammation and GPR40 is a FFA receptor with anti-inflammatory properties, it is important to define the role of GPR40 in MetS-associated periodontitis. MATERIALS AND METHODS: We induced MetS and periodontitis by high-fat diet and periodontal injection of lipopolysaccharide (LPS), respectively, in wild-type and GPR40-deficient mice and determined alveolar bone loss and periodontal inflammation using micro-computed tomography, histology, and osteoclast staining. We also performed in vitro study to determine the role of GPR40 in the expression of proinflammatory genes. RESULTS: The primary outcome of the study is that GPR40 deficiency increased alveolar bone loss and enhanced osteoclastogenesis in control mice and the mice with both MetS and periodontitis. GPR40 deficiency also augmented periodontal inflammation in control mice and the mice with both MetS and periodontitis. Furthermore, GPR40 deficiency led to increased plasma lipids and insulin resistance in control mice but had no effect on the metabolic parameters in mice with MetS alone. For mice with both MetS and periodontitis, GPR40 deficiency increased insulin resistance. Finally, in vitro studies with macrophages showed that deficiency or inhibition of GPR40 upregulated proinflammatory genes while activation of GPR40 downregulated proinflammatory gene expression stimulated synergistically by LPS and palmitic acid. CONCLUSION: GPR40 deficiency worsens alveolar bone loss and periodontal inflammation in mice with both periodontitis and MetS, suggesting that GPR40 plays a favorable role in MetS-associated periodontitis. Furthermore, GPR40 deficiency or inhibition in macrophages further upregulated proinflammatory and pro-osteoclastogenic genes induced by LPS and palmitic acid, suggesting that GPR40 has anti-inflammatory and anti-osteoclastogenic properties.


Assuntos
Perda do Osso Alveolar , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Síndrome Metabólica , Periodontite , Camundongos , Animais , Síndrome Metabólica/complicações , Síndrome Metabólica/metabolismo , Perda do Osso Alveolar/patologia , Diabetes Mellitus Tipo 2/complicações , Lipopolissacarídeos/efeitos adversos , Microtomografia por Raio-X , Periodontite/metabolismo , Inflamação , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Anti-Inflamatórios , Ácidos Graxos não Esterificados , Ácidos Palmíticos/efeitos adversos
3.
Am J Physiol Endocrinol Metab ; 320(1): E30-E42, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33103454

RESUMO

G-protein-coupled receptor 40 (GPR40) is highly expressed in pancreatic islets, and its activation increases glucose-stimulated insulin secretion from pancreas. Therefore, GPR40 is considered as a target for type 2 diabetes mellitus (T2DM). Since nonalcoholic fatty liver disease (NAFLD) is associated with T2DM and GPR40 is also expressed by hepatocytes and macrophages, it is important to understand the role of GPR40 in NAFLD. However, the role of GPR40 in NAFLD in animal models has not been well defined. In this study, we fed wild-type or GPR40 knockout C57BL/6 mice a high-fat diet (HFD) for 20 wk and then assessed the effect of GPR40 deficiency on HFD-induced NAFLD. Assays on metabolic parameters showed that an HFD increased body weight, glucose, insulin, insulin resistance, cholesterol, and alanine aminotransferase (ALT), and GPR40 deficiency did not mitigate the HFD-induced metabolic abnormalities. In contrast, we found that GPR40 deficiency was associated with increased body weight, insulin, insulin resistance, cholesterol, and ALT in control mice fed a low-fat diet (LFD). Surprisingly, histology and Oil Red O staining showed that GPR40 deficiency in LFD-fed mice was associated with steatosis. Immunohistochemical analysis showed that GPR40 deficiency also increased F4/80, a macrophage biomarker, in LFD-fed mice. Furthermore, results showed that GPR40 deficiency led to a robust upregulation of hepatic fatty acid translocase (FAT)/CD36 expression. Finally, our in vitro studies showed that GPR40 knockdown by siRNA or a GPR40 antagonist increased palmitic acid-induced FAT/CD36 mRNA in hepatocytes. Taken together, this study indicates that GPR40 plays an important role in homeostasis of hepatic metabolism and inflammation and inhibits nonalcoholic steatohepatitis by possible modulation of FAT/CD36 expression.


Assuntos
Antígenos CD36/biossíntese , Fígado Gorduroso/metabolismo , Fígado/metabolismo , Receptores Acoplados a Proteínas G/deficiência , Animais , Peso Corporal , Antígenos CD36/genética , Dieta Hiperlipídica , Dislipidemias/genética , Fígado Gorduroso/patologia , Hepatite/metabolismo , Hepatite/patologia , Resistência à Insulina/genética , Fígado/patologia , Testes de Função Hepática , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptores Acoplados a Proteínas G/genética , Regulação para Cima
4.
Am J Physiol Gastrointest Liver Physiol ; 319(4): G494-G501, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32845170

RESUMO

Small intestinal neuroendocrine tumors (SI-NET) are serotonin-secreting well-differentiated neuroendocrine tumors of putative enterochromaffin (EC) cell origin. Recent studies recognize a subset of EC cells that is label-retaining at the +4 position in the crypt and functions as a reserve intestinal stem cell. Importantly, this +4 reserve EC cell subset not only contributes to regeneration of the intestinal epithelium during injury and inflammation but also to basal crypt homeostasis at a constant rate. The latter function suggests that the +4 EC cell subset serves as an active reserve stem cell via a constant rate of dedifferentiation. Characterization of early tumor formation of SI-NET, observed as crypt-based EC cell clusters in many cases of familial SI-NETs, suggests that the +4 active reserve EC cell subset is the cell of origin. This newly discovered active reserve stem cell property of EC cells can account for unique biological mechanisms and processes associated with the genesis and development of SI-NETs. The recognition of this property of the +4 active reserve EC cell subset may provide novel opportunities to explore NETs in the gastrointestinal tract and other organs.


Assuntos
Células Enterocromafins/patologia , Neoplasias Intestinais/patologia , Intestino Delgado/patologia , Tumores Neuroendócrinos/patologia , Células-Tronco/patologia , Células-Tronco/fisiologia , Animais , Carcinogênese/patologia , Desdiferenciação Celular , Células Enterocromafins/fisiologia , Humanos , Camundongos , Tumores Neuroendócrinos/metabolismo , Serotonina/metabolismo
5.
Am J Physiol Gastrointest Liver Physiol ; 316(1): G64-G74, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30359083

RESUMO

The normal intestinal epithelium is continuously regenerated at a rapid rate from actively cycling Lgr5-expressing intestinal stem cells (ISCs) that reside at the crypt base. Recent mathematical modeling based on several lineage-tracing studies in mice shows that the symmetric cell division-dominant neutral drift model fits well with the observed in vivo growth of ISC clones and suggests that symmetric divisions are central to ISC homeostasis. However, other studies suggest a critical role for asymmetric cell division in the maintenance of ISC homeostasis in vivo. Here, we show that the stochastic branching and Moran process models with both a symmetric and asymmetric division mode not only simulate the stochastic growth of the ISC clone in silico but also closely fit the in vivo stem cell dynamics observed in lineage-tracing studies. In addition, the proposed model with highest probability for asymmetric division is more consistent with in vivo observations reported here and by others. Our in vivo studies of mitotic spindle orientations and lineage-traced progeny pairs indicate that asymmetric cell division is a dominant mode used by ISCs under normal homeostasis. Therefore, we propose the asymmetric cell division-dominant neutral drift model for normal ISC homeostasis. NEW & NOTEWORTHY The prevailing mathematical model suggests that intestinal stem cells (ISCs) divide symmetrically. The present study provides evidence that asymmetric cell division is the major contributor to ISC maintenance and thus proposes an asymmetric cell division-dominant neutral drift model. Consistent with this model, in vivo studies of mitotic spindle orientation and lineage-traced progeny pairs indicate that asymmetric cell division is the dominant mode used by ISCs under normal homeostasis.


Assuntos
Divisão Celular Assimétrica/fisiologia , Homeostase/fisiologia , Intestinos/citologia , Células-Tronco/citologia , Animais , Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Células Cultivadas , Mucosa Intestinal/citologia , Camundongos , Regeneração/fisiologia
6.
Am J Physiol Gastrointest Liver Physiol ; 315(4): G495-G510, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29848020

RESUMO

Lgr5-expressing intestinal stem cells (ISCs) maintain continuous and rapid generation of the intestinal epithelium. Here, we present evidence that dedifferentiation of committed enteroendocrine cells (EECs) contributes to maintenance of the epithelium under both basal conditions and in response to injury. Lineage-tracing studies identified a subset of EECs that reside at +4 position for more than 2 wk, most of which were BrdU-label-retaining cells. Under basal conditions, cells derived from these EECs grow from the bottom of the crypt to generate intestinal epithelium according to neutral drift kinetics that is consistent with dedifferentiation of mature EECs to ISCs. The lineage tracing of EECs demonstrated reserve stem cell properties in response to radiation-induced injury with the generation of reparative EEC-derived epithelial patches. Finally, the enterochromaffin (EC) cell was the predominant EEC type participating in these stem cell dynamics. These results provide novel insights into the +4 reserve ISC hypothesis, stem cell dynamics of the intestinal epithelium, and in the development of EC-derived small intestinal tumors. NEW & NOTEWORTHY The current manuscript demonstrating that a subset of mature enteroendocrine cells (EECs), predominantly enterochromaffin cells, dedifferentiates to fully functional intestinal stem cells (ISCs) is novel, timely, and important. These cells dedifferentiate to ISCs not only in response to injury but also under basal homeostatic conditions. These novel findings provide a mechanism in which a specified cell can dedifferentiate and contribute to normal tissue plasticity as well as the development of EEC-derived intestinal tumors under pathologic conditions.


Assuntos
Células-Tronco Adultas/citologia , Diferenciação Celular , Proliferação de Células , Células Enteroendócrinas/citologia , Intestino Delgado/citologia , Células-Tronco Adultas/metabolismo , Animais , Células Cultivadas , Células Enteroendócrinas/metabolismo , Intestino Delgado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Lesões Experimentais por Radiação/patologia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
7.
Gastroenterology ; 151(1): 140-51, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27003604

RESUMO

BACKGROUND & AIMS: Small intestinal neuroendocrine tumors (SI-NETs) are serotonin-secreting well-differentiated neuroendocrine tumors believed to originate from enterochromaffin (EC) cells. Intestinal stem cell (ISC) are believed to contribute to the formation of SI-NETs, although little is known about tumor formation or development. We investigated the relationship between EC cells, ISCs, and SI-NETs. METHODS: We analyzed jejuno-ileal tissue specimens from 14 patients with familial SI-NETs enrolled in the Natural History of Familial Carcinoid Tumor study at the National Institutes of Health from January 2009 to December 2014. Frozen and paraffin-embedded tumor tissues of different stages and isolated crypts were analyzed by in situ hybridization and immunohistochemistry. Tumor clonality was assessed by analyses of mitochondrial DNA. RESULTS: We identified multifocal aberrant crypt-containing endocrine cell clusters (ACECs) that contain crypt EC cell microtumors in patients with familial SI-NETs. RNA in situ hybridization revealed expression of the EC cell and reserve stem cell genes TPH1, BMI1, HOPX, and LGR5(low), in the ACECs and more advanced extraepithelial tumor nests. This expression pattern resembled that of reserve EC cells that express reserve ISC genes; most reside at the +4 position in normal crypts. The presence of multifocal ACECs from separate tumors and in the macroscopic tumor-free mucosa indicated widespread, independent, multifocal tumorigenesis. Analyses of mitochondrial DNA confirmed the independent origin of the ACECs. CONCLUSIONS: Familial SI-NETs originate from a subset of EC cells (reserve EC cells that express reserve ISC genes) via multifocal and polyclonal processes. Increasing our understanding of the role of these reserve EC cells in the genesis of multifocal SI-NETs could improve diagnostic and therapeutic strategies for this otherwise intractable disease.


Assuntos
Carcinogênese/genética , Neoplasias do Íleo/genética , Neoplasias do Jejuno/genética , Família Multigênica/genética , Tumores Neuroendócrinos/genética , Células Enterocromafins/metabolismo , Proteínas de Homeodomínio/genética , Humanos , Hibridização In Situ , Intestino Delgado/citologia , Complexo Repressor Polycomb 1/genética , Receptores Acoplados a Proteínas G/genética , Células-Tronco/metabolismo , Triptofano Hidroxilase/genética , Proteínas Supressoras de Tumor/genética
8.
J Allergy Clin Immunol ; 137(3): 907-18.e9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26431580

RESUMO

BACKGROUND: IL-5(+) pathogenic effector T(H)2 (peT(H)2) cells are a T(H)2 cell subpopulation with enhanced proinflammatory function that has largely been characterized in murine models of allergic inflammation. OBJECTIVE: We sought to identify phenotype markers for human peT(H)2 cells and characterize their function in patients with allergic eosinophilic inflammatory diseases. METHODS: Patients with eosinophilic gastrointestinal disease (EGID), patients with atopic dermatitis (AD), and nonatopic healthy control (NA) subjects were enrolled. peT(H)2 and conventional T(H)2 (cT(H)2) cell phenotype, function, and cytokine production were analyzed by using flow cytometry. Confirmatory gene expression was measured by using quantitative RT-PCR. Prostaglandin D2 levels were measured with ELISA. Gut T(H)2 cells were obtained by means of esophagogastroduodenoscopy. RESULTS: peT(H)2 cells were identified as chemoattractant receptor-homologous molecule expressed on T(H)2 cells-positive (CRTH2(+)), hematopoietic prostaglandin D synthase-positive CD161(hi) CD4 T cells. peT(H)2 cells expressed significantly greater IL-5 and IL-13 than did hematopoietic prostaglandin D synthase-negative and CD161(-) cT(H)2 cells. peT(H)2 cells were highly correlated with blood eosinophilia (r = 0.78-0.98) and were present in 30- to 40-fold greater numbers in subjects with EGID and those with AD versus NA subjects. Relative to cT(H)2 cells, peT(H)2 cells preferentially expressed receptors for thymic stromal lymphopoietin, IL-25, and IL-33 and demonstrated greater responsiveness to these innate pro-TH2 cytokines. peT(H)2 but not cT(H)2 cells produced prostaglandin D2. In patients with EGID and those with AD, peT(H)2 cells expressed gut- and skin-homing receptors, respectively. There were significantly greater numbers of peT(H)2 cells in gut tissue from patients with EGID versus NA subjects. CONCLUSION: peT(H)2 cells are the primary functional proinflammatory human T(H)2 cell subpopulation underlying allergic eosinophilic inflammation. The unambiguous phenotypic identification of human peT(H)2 cells provides a powerful tool to track these cells in future pathogenesis studies and clinical trials.


Assuntos
Eosinófilos/imunologia , Eosinófilos/metabolismo , Oxirredutases Intramoleculares/metabolismo , Lipocalinas/metabolismo , Células Th2/imunologia , Células Th2/metabolismo , Animais , Biomarcadores , Diferenciação Celular , Linhagem Celular , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Hipersensibilidade/imunologia , Hipersensibilidade/metabolismo , Imunidade Inata , Memória Imunológica , Imunofenotipagem , Interleucina-5/metabolismo , Camundongos , Subfamília B de Receptores Semelhantes a Lectina de Células NK/metabolismo , Fenótipo , Receptores CCR/metabolismo , Receptores de Retorno de Linfócitos/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Células Th2/citologia
9.
Gastroenterology ; 149(1): 67-78, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25865046

RESUMO

BACKGROUND & AIMS: Small intestinal carcinoids are rare and difficult to diagnose and patients often present with advanced incurable disease. Although the disease occurs sporadically, there have been reports of family clusters. Hereditary small intestinal carcinoid has not been recognized and genetic factors have not been identified. We performed a genetic analysis of families with small intestinal carcinoids to establish a hereditary basis and find genes that might cause this cancer. METHODS: We performed a prospective study of 33 families with at least 2 cases of small intestinal carcinoids. Affected members were characterized clinically and asymptomatic relatives were screened and underwent exploratory laparotomy for suspected tumors. Disease-associated mutations were sought using linkage analysis, whole-exome sequencing, and copy number analyses of germline and tumor DNA collected from members of a single large family. We assessed expression of mutant protein, protein activity, and regulation of apoptosis and senescence in lymphoblasts derived from the cases. RESULTS: Familial and sporadic carcinoids are clinically indistinguishable except for the multiple synchronous primary tumors observed in most familial cases. Nearly 34% of asymptomatic relatives older than age 50 were found to have occult tumors; the tumors were cleared surgically from 87% of these individuals (20 of 23). Linkage analysis and whole-exome sequencing identified a germline 4-bp deletion in the gene inositol polyphosphate multikinase (IPMK), which truncates the protein. This mutation was detected in all 11 individuals with small intestinal carcinoids and in 17 of 35 family members whose carcinoid status was unknown. Mutant IPMK had reduced kinase activity and nuclear localization, compared with the full-length protein. This reduced activation of p53 and increased cell survival. CONCLUSIONS: We found that small intestinal carcinoids can occur as an inherited autosomal-dominant disease. The familial form is characterized by multiple synchronous primary tumors, which might account for 22%-35% of cases previously considered sporadic. Relatives of patients with familial carcinoids should be screened to detect curable early stage disease. IPMK haploinsufficiency promotes carcinoid tumorigenesis.


Assuntos
Tumor Carcinoide/genética , Mutação em Linhagem Germinativa , Neoplasias Intestinais/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Tumor Carcinoide/diagnóstico , Tumor Carcinoide/patologia , Família , Feminino , Humanos , Neoplasias Intestinais/diagnóstico , Neoplasias Intestinais/patologia , Laparotomia , Masculino , Pessoa de Meia-Idade , Linhagem , Estudos Prospectivos , Adulto Jovem
10.
Proc Natl Acad Sci U S A ; 107(41): 17791-6, 2010 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-20876097

RESUMO

The calcium-sensing receptor (CaR) is the major sensor and regulator of extracellular Ca(2+), whose activity is allosterically regulated by amino acids and pH. Recently, CaR has been identified in the stomach and intestinal tract, where it has been proposed to function in a non-Ca(2+) homeostatic capacity. Luminal nutrients, such as Ca(2+) and amino acids, have been recognized for decades as potent stimulants for gastrin and acid secretion, although the molecular basis for their recognition remains unknown. The expression of CaR on gastrin-secreting G cells in the stomach and their shared activation by Ca(2+), amino acids, and elevated pH suggest that CaR may function as the elusive physiologic sensor regulating gastrin and acid secretion. The genetic and pharmacologic studies presented here comparing CaR-null mice and wild-type littermates support this hypothesis. Gavage of Ca(2+), peptone, phenylalanine, Hepes buffer (pH 7.4), and CaR-specific calcimimetic, cinacalcet, stimulated gastrin and acid secretion, whereas the calcilytic, NPS 2143, inhibited secretion only in the wild-type mouse. Consistent with known growth and developmental functions of CaR, G-cell number was progressively reduced between 30 and 90 d of age by more than 65% in CaR-null mice. These studies of nutrient-regulated G-cell gastrin secretion and growth provide definitive evidence that CaR functions as a physiologically relevant multimodal sensor. Medicinals targeting diseases of Ca(2+) homeostasis should be reviewed for effects outside traditional Ca(2+)-regulating tissues in view of the broader distribution and function of CaR.


Assuntos
Sinalização do Cálcio/fisiologia , Células Secretoras de Gastrina/metabolismo , Gastrinas/metabolismo , Homeostase/fisiologia , Receptores de Detecção de Cálcio/fisiologia , Animais , Bombesina/análogos & derivados , Bombesina/farmacologia , Proliferação de Células , Células Secretoras de Gastrina/efeitos dos fármacos , Células Secretoras de Gastrina/fisiologia , Concentração de Íons de Hidrogênio , Imuno-Histoquímica , Camundongos , Microscopia de Fluorescência , Naftalenos/farmacologia , Fragmentos de Peptídeos/farmacologia , Receptores de Detecção de Cálcio/antagonistas & inibidores , Receptores de Detecção de Cálcio/genética , Receptores de Detecção de Cálcio/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-37124052

RESUMO

Finding small lesions is very challenging due to lack of noticeable features, severe class imbalance, as well as the size itself. One approach to improve small lesion segmentation is to reduce the region of interest and inspect it at a higher sensitivity rather than performing it for the entire region. It is usually implemented as sequential or joint segmentation of organ and lesion, which requires additional supervision on organ segmentation. Instead, we propose to utilize an intensity distribution of a target lesion at no additional labeling cost to effectively separate regions where the lesions are possibly located from the background. It is incorporated into network training as an auxiliary task. We applied the proposed method to segmentation of small bowel carcinoid tumors in CT scans. We observed improvements for all metrics (33.5% → 38.2%, 41.3% → 47.8%, 30.0% → 35.9% for the global, per case, and per tumor Dice scores, respectively.) compared to the baseline method, which proves the validity of our idea. Our method can be one option for explicitly incorporating intensity distribution information of a target in network training.

12.
Med Phys ; 50(12): 7865-7878, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36988164

RESUMO

BACKGROUND: Small bowel carcinoid tumor is a rare neoplasm and increasing in incidence. Patients with small bowel carcinoid tumors often experience long delays in diagnosis due to the vague symptoms, slow growth of tumors, and lack of clinician awareness. Computed tomography (CT) is the most common imaging study for diagnosis of small bowel carcinoid tumor. It is often used with positron emission tomography (PET) to capture anatomical and functional aspects of carcinoid tumors and thus to increase the sensitivity. PURPOSE: We compared three different kinds of methods for the automatic detection of small bowel carcinoid tumors on CT scans, which is the first to the best of our knowledge. METHODS: Thirty-three preoperative CT scans of 33 unique patients with surgically-proven carcinoid tumors within the small bowel were collected. Ground-truth segmentation of tumors was drawn on CT scans by referring to available 18 F-DOPA PET scans and the corresponding radiology report. These scans were split into the trainval set (n = 24) and the test positive set (n= 9). Additionally, 22 CT scans of 22 unique patients who had no evidence of the tumor were collected to comprise the test negative set. We compared three different kinds of detection methods, which are detection network, patch-based classification, and segmentation-based methods. We also investigated the usefulness of small bowel segmentation for reduction of false positives (FPs) for each method. Free-response receiver operating characteristic (FROC) curves and receiver operating characteristic (ROC) curves were used for lesion- and patient-level evaluations, respectively. Statistical analyses comparing the FROC and ROC curves were also performed. RESULTS: The detection network method performed the best among the compared methods. For lesion-level detection, the detection network method, without the small bowel segmentation-based filtering, achieved sensitivity values of (60.8%, 81.1%, 82.4%, 86.5%) at per-scan FP rates of (1, 2, 4 ,8), respectively. The use of the small bowel segmentation did not improve the performance ( p = 0.742 $p=0.742$ ). For patient-level detection, again the detection network method, but with the small bowel segmentation-based filtering, achieved the highest AUC of 0.86 with a sensitivity of 78% and specificity of 82% at the Youden point. CONCLUSIONS: The carcinoid tumors in this patient population were very small and potentially difficult to diagnose. The presented method showed reasonable sensitivity at small numbers of FPs for lesion-level detection. It also achieved a promising AUC for patient-level detection. The method may have clinical application in patients with this rare and difficult to detect disease.


Assuntos
Tumor Carcinoide , Aprendizado Profundo , Neoplasias Intestinais , Humanos , Sensibilidade e Especificidade , Tomografia Computadorizada por Raios X/métodos , Neoplasias Intestinais/diagnóstico por imagem , Tumor Carcinoide/diagnóstico por imagem
13.
Ther Adv Med Oncol ; 15: 17588359231156871, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936198

RESUMO

Background and Aims: Early-stage small intestinal neuroendocrine tumors (SI-NETs) are generally asymptomatic and difficult to diagnose. As a result, patients often present with late-stage incurable disease. SI-NETs originate from enterochromaffin (EC) cells, which develop enteroendocrine cell (EEC) clusters consisting of a subset of EC cells at the crypt bottom at an early stage of tumor progression. In a familial form of SI-NET, EEC clusters arise in a multifocal and polyclonal fashion. We sought to determine whether early detection and analysis of cryptal EEC clusters could provide insight into the development of SI-NETs and allow successful pre-symptomatic screening for at risk family members of patients with SI-NETs. Methods: Isolated crypts from endoscopic ileal biopsies or surgically removed specimens from 43 patients with familial SI-NET and 20 controls were formalin-fixed, immunostained for chromogranin A, and examined by confocal three-dimensional analysis for the presence of EEC cluster formations. Results: Examination of multiple areas of macroscopic tumor-free mucosa in surgically resected specimens from patients with familial SI-NET revealed widely distributed, independent, multifocal EEC micro-tumor formations of varying sizes. Consistent with this finding, randomly sampled ileal biopsy specimens identified aberrant crypt containing endocrine cell clusters (ACECs) in patients. ACECs were found exclusively in patients (23/43, 53%) and not in controls (0/20). Furthermore, analysis of positions and numbers of EECs in crypts and ACECs indicated significant increases in EECs at the crypt bottom, predominantly at positions 0 and 1' (p < 0.0001 compared to controls), suggesting the progression of EEC accumulation below +4 position as the early process of ACEC formation. These findings also suggested that ACECs were precursors in the development of micro-tumors and subsequent macro-tumors. Conclusion: This study indicates that SI-NETs develop from deep crypt EC cells to become ACECs, micro-tumors, and ultimately gross tumors. This process occurs widely throughout the distal small intestine in patients with familial SI-NETs consistent with but not exclusively explained by germline disease. Finally, analysis of crypts from ileal biopsies could contribute in part to earlier diagnostic screening processes avoiding late-stage presentation of incurable disease.

14.
iScience ; 26(5): 106623, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37216099

RESUMO

Protein kinase B (AKT) is essential for cell survival, proliferation, and migration and has been associated with several diseases. Here, we demonstrate that inositol polyphosphate multikinase (IPMK's) lipid kinase property drives AKT activation via increasing membrane localization and activation of PDK1 (3-Phosphoinositide-dependent kinase 1), largely independent of class I PI3k (cPI3K). Deletion of IPMK impairs cell migration, which is partially associated with the abolition of PDK1-mediated ROCK1 disinhibition and subsequent myosin light chain (MLC) phosphorylation. IPMK is highly expressed in intestinal epithelial cells (IEC). Deleting IPMK in IEC reduced AKT phosphorylation and diminished the number of Paneth cells. Ablation of IPMK impaired IEC regeneration both basally and after chemotherapy-induced damage, suggesting a broad role for IPMK in activating AKT and intestinal tissue regeneration. In conclusion, the PI3k activity of IPMK is necessary for PDK1-mediated AKT activation and intestinal homeostasis.

15.
Mol Ther ; 19(3): 620-6, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21157437

RESUMO

Autologous T lymphocytes genetically engineered to express a murine T cell receptor (TCR) against human carcinoembryonic antigen (CEA) were administered to three patients with metastatic colorectal cancer refractory to standard treatments. All patients experienced profound decreases in serum CEA levels (74-99%), and one patient had an objective regression of cancer metastatic to the lung and liver. However, a severe transient inflammatory colitis that represented a dose limiting toxicity was induced in all three patients. This report represents the first example of objective regression of metastatic colorectal cancer mediated by adoptive T cell transfer and illustrates the successful use of a TCR, raised in human leukocyte antigen (HLA) transgenic mice, against a human tumor associated antigen. It also emphasizes the destructive power of small numbers of highly avid T cells and the limitations of using CEA as a target for cancer immunotherapy.


Assuntos
Antígeno Carcinoembrionário/imunologia , Colite/imunologia , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/secundário , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Adulto , Animais , Antígeno Carcinoembrionário/sangue , Colite/induzido quimicamente , Colite/patologia , Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Colorretais/patologia , Neoplasias Colorretais/terapia , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Humanos , Imunoterapia Adotiva , Masculino , Camundongos , Pessoa de Meia-Idade , Radiografia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Retroviridae/genética , Retroviridae/metabolismo , Linfócitos T/metabolismo , Resultado do Tratamento
16.
PLoS One ; 17(11): e0277251, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36331958

RESUMO

GPR40, a G protein-coupled receptor for free fatty acids (FFAs), is considered as a therapeutic target for type 2 diabetes mellitus (T2DM) since GPR40 activation in pancreatic beta cells enhances glucose-stimulated insulin secretion. Nonalcoholic fatty liver disease (NAFLD) is a common complication of T2DM or metabolic syndrome (MetS). However, the role of GPR40 in NAFLD associated with T2DM or MetS has not been well established. Given that it is known that cholesterol and FFAs are critically involved in the pathogenesis of nonalcoholic steatohepatitis (NASH) and LDL receptor (LDLR)-deficient mice are a good animal model for human hyperlipidemia including high cholesterol and FFAs, we generated GPR40 and LDLR double knockout (KO) mice in this study to determine the effect of GPR40 KO on hyperlipidemia-promoted NASH. We showed that GPR40 KO increased plasma levels of cholesterol and FFAs in high-fat diet (HFD)-fed LDLR-deficient mice. We also showed that GPR40 KO exacerbated HFD-induced hepatic steatosis, inflammation and fibrosis. Further study demonstrated that GPR40 KO led to upregulation of hepatic CD36 and genes involved in lipogenesis, fatty acid oxidation, fibrosis and inflammation. Finally, our in vitro mechanistic studies showed that while CD36 was involved in upregulation of proinflammatory molecules in macrophages by palmitic acid (PA) and lipopolysaccharide (LPS), GPR40 activation in macrophages exerts anti-inflammatory effects. Taken together, this study demonstrated for the first time that loss of GPR40 in LDLR-deficient mice exacerbated HFD-induced hyperlipidemia, hepatic steatosis, inflammation and fibrosis potentially through a CD36-dependent mechanism, suggesting that GPR40 may play a beneficial role in hyperlipidemia-associated NASH in LDLR-deficient mice.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperlipidemias , Síndrome Metabólica , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Camundongos , Antígenos CD36/genética , Antígenos CD36/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Ácidos Graxos não Esterificados/metabolismo , Fibrose , Hiperlipidemias/complicações , Hiperlipidemias/genética , Inflamação/patologia , Fígado/metabolismo , Síndrome Metabólica/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptores de LDL/metabolismo
17.
Am J Physiol Gastrointest Liver Physiol ; 300(2): G345-56, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21088235

RESUMO

The spatial orientation of the enteroendocrine cells along the crypt-villus axis is closely associated with their differentiation in the intestine. Here we studied this relationship using primary duodenal crypts and an ex vivo organoid system established from cholecystokinin-green fluorescent protein (CCK-GFP) transgenic mice. In the primary duodenal crypts, GFP+ cells were found not only in the upper crypt but also at the crypt base, where the stem cells reside. Many GFP+ cells below +4 position were positive for the putative intestinal stem cell markers, leucine-rich repeat-containing G protein-coupled receptor 5, CD133, and doublecortin and CaM kinase-like-1, and also for the neuroendocrine transcription factor neurogenin 3. However, these cells were neither stem nor transient amplifying precursor cells because they were negative for both Ki-67 and phospho-Histone H3 and positive for the mature endocrine marker chromogranin A. Furthermore, these cells expressed multiple endocrine hormones. Tracking of GFP+ cells in the organoids from CCK-GFP mice indicated that GFP+ cells were first observed around the +4 position, some of which localized to the crypt base later in the culture period. These results suggest that a subset of enteroendocrine cells migrates down to the crypt base or stays localized at the crypt base, where they express stem and postmitotic endocrine markers. Further investigation of the function of this subset may provide novel insights into the genesis and development of enteroendocrine cells as well as enteroendocrine tumorigenesis.


Assuntos
Biomarcadores/metabolismo , Duodeno/citologia , Duodeno/metabolismo , Células Enteroendócrinas/metabolismo , Células-Tronco/metabolismo , Animais , Movimento Celular , Colecistocinina/genética , Colecistocinina/metabolismo , Cromogranina A/metabolismo , Células Enteroendócrinas/classificação , Células Enteroendócrinas/fisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica , Técnicas Imunológicas , Camundongos , Camundongos Transgênicos , Organoides , Fenótipo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Coloração e Rotulagem , Distribuição Tecidual
18.
Am J Physiol Gastrointest Liver Physiol ; 300(4): G538-46, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21252045

RESUMO

The extracellular calcium-sensing receptor (CaSR) has recently been recognized as an L-amino acid sensor and has been implicated in mediating cholecystokinin (CCK) secretion in response to aromatic amino acids. We investigated whether direct detection of L-phenylalanine (L-Phe) by CaSR results in CCK secretion in the native I cell. Fluorescence-activated cell sorting of duodenal I cells from CCK-enhanced green fluorescent protein (eGFP) transgenic mice demonstrated CaSR gene expression. Immunostaining of fixed and fresh duodenal tissue sections confirmed CaSR protein expression. Intracellular calcium fluxes were CaSR dependent, stereoselective for L-Phe over D-Phe, and responsive to type II calcimimetic cinacalcet in CCK-eGFP cells. Additionally, CCK secretion by an isolated I cell population was increased by 30 and 62% in response to L-Phe in the presence of physiological (1.26 mM) and superphysiological (2.5 mM) extracellular calcium concentrations, respectively. While the deletion of CaSR from CCK-eGFP cells did not affect basal CCK secretion, the effect of L-Phe or cinacalcet on intracellular calcium flux was lost. In fact, both secretagogues, as well as superphysiological Ca(2+), evoked an unexpected 20-30% decrease in CCK secretion compared with basal secretion in CaSR(-/-) CCK-eGFP cells. CCK secretion in response to KCl or tryptone was unaffected by the absence of CaSR. The present data suggest that CaSR is required for hormone secretion in the specific response to L-Phe by the native I cell, and that a receptor-mediated mechanism may inhibit hormone secretion in the absence of a fully functional CaSR.


Assuntos
Colecistocinina/metabolismo , Duodeno/metabolismo , Fenilalanina/farmacologia , Receptores de Detecção de Cálcio/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Duodeno/citologia , Imunofluorescência , Camundongos , Camundongos Transgênicos , Fenilalanina/metabolismo , Receptores de Detecção de Cálcio/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Am J Physiol Gastrointest Liver Physiol ; 300(5): G895-902, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21311026

RESUMO

Dietary protein is a major stimulant for cholecystokinin (CCK) secretion by the intestinal I cell, however, the mechanism by which protein is detected is unknown. Indirect functional evidence suggests that PepT1 may play a role in CCK-mediated changes in gastric motor function. However, it is unclear whether this oligopeptide transporter directly or indirectly activates the I cell. Using both the CCK-expressing enteroendocrine STC-1 cell and acutely isolated native I cells from CCK-enhanced green fluorescent protein (eGFP) mice, we aimed to determine whether PepT1 directly activates the enteroendocrine cell to elicit CCK secretion in response to oligopeptides. Both STC-1 cells and isolated CCK-eGFP cells expressed PepT1 transcripts. STC-1 cells were activated, as measured by ERK(1/2) phosphorylation, by both peptone and the PepT1 substrate Cefaclor; however, the PepT1 inhibitor 4-aminomethyl benzoic acid (AMBA) had no effect on STC-1 cell activity. The PepT1-transportable substrate glycyl-sarcosine dose-dependently decreased gastric motility in anesthetized rats but had no affect on activation of STC-1 cells or on CCK secretion by CCK-eGFP cells. CCK secretion was significantly increased in response to peptone but not to Cefaclor, cephalexin, or Phe-Ala in CCK-eGFP cells. Taken together, the data suggest that PepT1 does not directly mediate CCK secretion in response to PepT1 specific substrates. PepT1, instead, may have an indirect role in protein sensing in the intestine.


Assuntos
Colecistocinina/metabolismo , Células Enteroendócrinas/metabolismo , Hidrolisados de Proteína/farmacologia , Simportadores/fisiologia , Animais , Western Blotting , Células CACO-2 , Cefaclor/farmacologia , Linhagem Celular , Separação Celular , Colecistocinina/genética , Eletroforese em Gel de Poliacrilamida , Células Enteroendócrinas/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Motilidade Gastrointestinal/fisiologia , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Transportador 1 de Peptídeos , Peptonas/farmacologia , Fosforilação , RNA/biossíntese , RNA/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Simportadores/antagonistas & inibidores , Ácido Tranexâmico/metabolismo
20.
Surgery ; 159(1): 350-6, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26454678

RESUMO

BACKGROUND: The aim of this study was to prospectively screen patients with a positive family history of carcinoid small intestine neuroendocrine tumors (SI-NETs) to elucidate the benefits of early detection and operative intervention. METHODS: A single-center, prospective trial was conducted from 2008 to 2014 that evaluated patients with 2 or more blood relatives with carcinoid SI-NETs. All eligible patients were screened with urine/serum biochemistries and various imaging modalities. Operative intervention was elected in patients found to have at least 1 positive diagnostic study. RESULTS: Twenty-nine patients from 13 families had occult carcinoid SI-NETs (15 female, 14 male). Twenty-four of the 29 patients (83%) had multifocal disease found in either the distal jejunum or ileum. On average, 75.9 cm (range, 13-195) of bowel was resected in 1 segment. Three patients were found to have stage IV disease at operation. All stage I-IIIB patients who had R0 resections have remained disease-free, with a median follow-up of 35 months. CONCLUSION: Familial carcinoid SI-NETs often are asymptomatic and can be diagnosed with aggressive screening. With early detection, there may be a window of opportunity for operative resection to change the natural history of this disease and even prove to be curative.


Assuntos
Tumor Carcinoide/diagnóstico , Neoplasias Intestinais/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Tumor Carcinoide/genética , Tumor Carcinoide/cirurgia , Detecção Precoce de Câncer , Feminino , Humanos , Neoplasias Intestinais/genética , Neoplasias Intestinais/cirurgia , Intestino Delgado/cirurgia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA