Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Pharmacol Rev ; 75(6): 1233-1318, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37586884

RESUMO

The NR superfamily comprises 48 transcription factors in humans that control a plethora of gene network programs involved in a wide range of physiologic processes. This review will summarize and discuss recent progress in NR biology and drug development derived from integrating various approaches, including biophysical techniques, structural studies, and translational investigation. We also highlight how defective NR signaling results in various diseases and disorders and how NRs can be targeted for therapeutic intervention via modulation via binding to synthetic lipophilic ligands. Furthermore, we also review recent studies that improved our understanding of NR structure and signaling. SIGNIFICANCE STATEMENT: Nuclear receptors (NRs) are ligand-regulated transcription factors that are critical regulators of myriad physiological processes. NRs serve as receptors for an array of drugs, and in this review, we provide an update on recent research into the roles of these drug targets.


Assuntos
Farmacologia Clínica , Humanos , Receptores Citoplasmáticos e Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Transporte , Ligantes
2.
Arch Biochem Biophys ; 676: 108136, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31604072

RESUMO

The flavoprotein trimethylamine dehydrogenase is a member of a small class of flavoproteins that catalyze amine oxidation and transfer the electrons through an Fe/S center to an external oxidant. The mechanism of amine oxidation by this family of enzymes has not been established. Here, we describe the use of pH and kinetic isotope effects with the slow substrate dimethylamine to study the mechanism. The data are consistent with the neutral amine being the form of the substrate that binds productively at the pH optimum, since the pKa seen in the kcat/Kamine pH profile for a group that must be unprotonated matches the pKa of dimethylamine. The D(kcat/Kamine) value decreases to unity as the pH decreases. This suggests the presence of an alternative pathway at low pH, in which the protonated substrate binds and is then deprotonated by an active-site residue prior to oxidation. The kcat and Dkcat values both decrease to limiting values at low pH with similar pKa values. This is consistent with a step other than amine oxidation becoming rate-limiting for turnover.


Assuntos
Deutério/química , Dimetilaminas/química , Dimetilaminas/metabolismo , Oxirredutases N-Desmetilantes/metabolismo , Biocatálise , Concentração de Íons de Hidrogênio , Cinética , Methylophilus methylotrophus/enzimologia , Ligação Proteica , Especificidade por Substrato
3.
Biochemistry ; 56(14): 2024-2030, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28355481

RESUMO

The flavoprotein d-amino acid oxidase has long served as a paradigm for understanding the mechanism of oxidation of amino acids by flavoproteins. Recently, a mutant d-amino acid oxidase (Y228L/R283G) that catalyzed the oxidation of amines rather than amino acids was described [Yasukawa, K., et al. (2014) Angew. Chem., Int. Ed. 53, 4428-4431]. We describe here the use of pH and kinetic isotope effects with (R)-α-methylbenzylamine as a substrate to determine whether the mutant enzyme utilizes the same catalytic mechanism as the wild-type enzyme. The effects of pH on the steady-state and rapid-reaction kinetics establish that the neutral amine is the substrate, while an active-site residue, likely Tyr224, must be uncharged for productive binding. There is no solvent isotope effect on the kcat/Km value for the amine, consistent with the neutral amine being the substrate. The deuterium isotope effect on the kcat/Km value is pH-independent, with an average value of 5.3, similar to values found with amino acids as substrates for the wild-type enzyme and establishing that there is no commitment to catalysis with this substrate. The kcat/KO2 value is similar to that seen with amino acids as the substrate, consistent with the oxidative half-reaction being unperturbed by the mutation and with flavin oxidation preceding product release. All of the data are consistent with the mutant enzyme utilizing the same mechanism as the wild-type enzyme, transfer of hydride from the neutral amine to the flavin.


Assuntos
D-Aminoácido Oxidase/química , Proteínas Fúngicas/química , Glucose Oxidase/química , Monoaminoxidase/química , Fenetilaminas/química , Animais , Aspergillus niger/química , Aspergillus niger/enzimologia , Biocatálise , Domínio Catalítico , D-Aminoácido Oxidase/genética , D-Aminoácido Oxidase/metabolismo , Medição da Troca de Deutério , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expressão Gênica , Glucose Oxidase/genética , Glucose Oxidase/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Monoaminoxidase/genética , Monoaminoxidase/metabolismo , Fenetilaminas/metabolismo , Relação Estrutura-Atividade , Suínos , Termodinâmica
4.
J Am Chem Soc ; 135(30): 11193-204, 2013 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-23800193

RESUMO

ß-Amino acids are biologically active compounds of interest in medicinal chemistry. A class I lyase-like family of aminomutases isomerizes (S)-α-arylalanines to the corresponding ß-amino acids by exchange of the NH2/H pair. This family uses a 3,5-dihydro-5-methylidene-4H-imidazol-4-one (MIO) group within the active site to initiate the reaction. The absolute stereochemistry of the product is known for an MIO-dependent tyrosine aminomutase from Chondromyces crocatus (CcTAM) that isomerizes (S)-α-tyrosine to (R)-ß-tyrosine. To evaluate the cryptic stereochemistry of the CcTAM mechanism, (2S,3S)-[2,3-(2)H2]- and (2S,3R)-[3-(2)H]-α-tyrosine were stereoselectively synthesized from unlabeled (or [(2)H]-labeled) (4'-hydroxyphenyl)acrylic acids by reduction with D2 (or H2) gas and a chiral Rh-Prophos catalyst. GC/EIMS analysis of the [(2)H]-ß-tyrosine biosynthesized by CcTAM revealed that the α-amino group was transferred to Cß of the phenylpropanoid skeleton with retention of configuration. These labeled substrates also showed that the pro-(3S) proton exchanges with protons from the bulk media during its migration to Cα during catalysis. (1)H- and (2)H NMR analyses of the [(2)H]-ß-tyrosine derived from (2S)-[3,3-(2)H2]-α-tyrosine by CcTAM catalysis showed that the migratory proton attached to Cα of the product also with retention of configuration. CcTAM is stereoselective for (R)-ß-tyrosine (85%) yet also forms the (S)-ß-tyrosine enantiomer (15%) through inversion of configuration at both migration termini, as described herein. The proportion of the (S)-ß-isomer made by CcTAM during steady state interestingly increased with solvent pH, and this effect on the proposed reaction mechanism is also discussed.


Assuntos
Biocatálise , Myxococcales/enzimologia , Tirosina Transaminase/metabolismo , Domínio Catalítico , Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Modelos Moleculares , Estereoisomerismo , Especificidade por Substrato , Tirosina/química , Tirosina/metabolismo , Tirosina Transaminase/química
5.
Eur J Med Chem ; 258: 115582, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37421886

RESUMO

Estrogen-related receptors (ERR) are an orphan nuclear receptor sub-family that play a critical role in regulating gene transcription for several physiological processes including mitochondrial function, cellular energy utilization and homeostasis. They have also been implicated to play a role in several pathological conditions. Herein, we report the identification, synthesis, structure-activity relationships and pharmacological evaluation of a new chemical series of potent pan-ERR agonists. This template was designed for ERRγ starting from the known acyl hydrazide template and compounds such as agonist GSK-4716 employing a structure-based drug design approach. This led to the preparation of a series of 2,5-disubstituted thiophenes from which several were found to be potent agonists of ERRγ in cell-based co-transfection assays. Additionally, direct binding to ERRγ was established through 1H NMR protein-ligand binding experiments. Compound optimization revealed that the phenolic or aniline groups could be replaced with a boronic acid moiety, which was able to maintain activity and demonstrated improved metabolic stability in microsomal in vitro assays. Further pharmacological evaluation of these compounds showed that they had roughly equivalent agonist activity on ERR isoforms α and ß representing an ERR pan-agonist profile. One potent agonist, SLU-PP-915 (10s), which contained a boronic acid moiety was profiled in gene expression assays and found to significantly upregulate the expression of ERR target genes such as peroxisome-proliferator activated receptor γ co-activators-1α, lactate dehydrogenase A, DNA damage inducible transcript 4 and pyruvate dehydrogenase kinase 4 both in vitro and in vivo.


Assuntos
Estrogênios , Isoformas de Proteínas
6.
Biochemistry ; 51(26): 5226-8, 2012 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-22686417

RESUMO

Burst-phase kinetic analysis was used to evaluate the deamination rate of the aminated-methylidene imidazolone (NH(2)-MIO) adduct of a Taxus phenylalanine aminomutase. The kinetic parameters were interrogated by a non-natural substrate (S)-styryl-α-alanine that yielded a chromophoric styrylacrylate product upon deamination by the aminomutase. Transient inactivation of the enzyme by the NH(2)-MIO adduct intermediate resulted in an initial burst of product, with reactivation by deamination of the adduct. This study validated the rate constants of a kinetic model demonstrating that the NH(2)-MIO adduct and cinnamate intermediate are sufficiently retained to catalyze the natural α- to ß-phenylalanine isomerization.


Assuntos
Amônia-Liases/metabolismo , Cinamatos/química , Cinamatos/metabolismo , Imidazóis/química , Imidazóis/metabolismo , Cinética , Pantoea/enzimologia , Fenilalanina Amônia-Liase/metabolismo , Streptomyces/enzimologia , Taxus/enzimologia
7.
Biochemistry ; 50(46): 10082-90, 2011 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-21985059

RESUMO

A Taxus canadensis phenylalanine aminomutase (TcPAM) catalyzes the isomerization of (S)-α- to (R)-ß-phenylalanine, making (E)-cinnamate (~10%) as a byproduct at steady state. A currently accepted mechanism for TcPAM suggests that the amino group is transferred from the substrate to a prosthetic group comprised of an amino acid triad in the active site and then principally rebinds to the carbon skeleton of the cinnamate intermediate to complete the α-ß isomerization. In contrast, when (S)-styryl-α-alanine is used as a substrate, TcPAM produces (2E,4E)-styrylacrylate as the major product (>99%) and (R)-styryl-ß-alanine (<1%). Comparison of the rates of conversion of the natural substrate (S)-α-phenylalanine and (S)-styryl-α-alanine to their corresponding products (k(cat) values of 0.053 ± 0.001 and 0.082 ± 0.002 s(-1), respectively) catalyzed by TcPAM suggests that the amino group resides in the active site longer than styrylacrylate. To demonstrate this principle, inhibition constants (K(I)) for selected acrylates ranging from 0.6 to 106 µM were obtained, and each had a lower K(I) compared to that of (2E,4E)-styrylacrylate (337 ± 12 µM). Evaluation of the inhibition constants and the rates at which both the α/ß-amino acids (between 7 and 80% yield) and styrylacrylate were made from a corresponding arylacrylate and styryl-α-alanine, respectively, by TcPAM catalysis revealed that the reaction progress was largely dependent on the K(I) of the acrylate. Bicyclic amino donor substrates also transferred their amino groups to an arylacrylate, demonstrating for the first time that ring-fused amino acids are productive substrates in the TcPAM-catalyzed reaction.


Assuntos
Alanina/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Taxus/enzimologia , Alanina/química , Domínio Catalítico , Cinamatos/metabolismo , Cinética , Fenilalanina/química , Fenilalanina/metabolismo , Fenilalanina Amônia-Liase/química , Estereoisomerismo , Especificidade por Substrato , Taxus/química
8.
Biochemistry ; 50(14): 2919-30, 2011 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-21361343

RESUMO

The structure of a phenylalanine aminomutase (TcPAM) from Taxus canadensis has been determined at 2.4 Å resolution. The active site of the TcPAM contains the signature 4-methylidene-1H-imidazol-5(4H)-one prosthesis, observed in all catalysts of the class I lyase-like family. This catalyst isomerizes (S)-α-phenylalanine to the (R)-ß-isomer by exchange of the NH2/H pair. The stereochemistry of the TcPAM reaction product is opposite of the (S)-ß-tyrosine made by the mechanistically related tyrosine aminomutase (SgTAM) from Streptomyces globisporus. Since TcPAM and SgTAM share similar tertiary- and quaternary-structures and have several highly conserved aliphatic residues positioned analogously in their active sites for substrate recognition, the divergent product stereochemistries of these catalysts likely cannot be explained by differences in active site architecture. The active site of the TcPAM structure also is in complex with (E)-cinnamate; the latter functions as both a substrate and an intermediate. To account for the distinct (3R)-ß-amino acid stereochemistry catalyzed by TcPAM, the cinnamate skeleton must rotate the C1-Cα and Cipso-Cß bonds 180° in the active site prior to exchange and rebinding of the NH2/H pair to the cinnamate, an event that is not required for the corresponding acrylate intermediate in the SgTAM reaction. Moreover, the aromatic ring of the intermediate makes only one direct hydrophobic interaction with Leu-104. A L104A mutant of TcPAM demonstrated an ∼1.5-fold increase in kcat and a decrease in KM values for sterically demanding 3'-methyl-α-phenylalanine and styryl-α-alanine substrates, compared to the kinetic parameters for TcPAM. These parameters did not change significantly for the mutant with 4'-methyl-α-phenylalanine compared to those for TcPAM.


Assuntos
Fenilalanina Amônia-Liase/química , Proteínas de Plantas/química , Estrutura Terciária de Proteína , Taxus/enzimologia , Sequência de Aminoácidos , Biocatálise , Domínio Catalítico , Cinamatos/química , Cinamatos/metabolismo , Cristalografia por Raios X , Cinética , Modelos Químicos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Mutação , Fenilalanina/química , Fenilalanina/metabolismo , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ligação Proteica , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
9.
J Am Chem Soc ; 133(22): 8531-3, 2011 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-21561099

RESUMO

The stereochemistry of a phenylalanine aminomutase (PAM) on the andrimid biosynthetic pathway in Pantoea agglomerans (Pa) is reported. PaPAM is a member of the 4-methylidene-1H-imidazol-5(4H)-one (MIO)-dependent family of catalysts and isomerizes (2S)-α-phenylalanine to (3S)-ß-phenylalanine, which is the enantiomer of the product made by the mechanistically similar aminomutase TcPAM from Taxus plants. The NH(2) and pro-(3S) hydrogen groups at C(α) and C(ß), respectively, of the substrate are removed and interchanged completely intramolecularly with inversion of configuration at the migration centers to form ß-phenylalanine. This is a contrast to the retention of configuration mechanism followed by TcPAM.


Assuntos
Pantoea/enzimologia , Fenilalanina Amônia-Liase/química , Fenilalanina/química , Catálise , Estrutura Molecular , Fenilalanina Amônia-Liase/metabolismo , Estereoisomerismo
10.
Cell Chem Biol ; 27(10): 1272-1284.e4, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32763139

RESUMO

TLX is an orphan nuclear receptor that plays a critical role in both embryonic and adult neurogenesis, as well in the pathogenesis of glioblastomas. TLX functions predominately as a transcriptional repressor, but no natural ligands or high-affinity synthetic ligands have been identified. Here, we describe the identification of natural and synthetic retinoids as functional ligands for TLX. We identified potent synthetic retinoids that directly bind to TLX and either activate or inhibit its transcriptional repressor activity. Furthermore, we identified all-trans and 11-cis retinaldehyde (retinal), retinoids that play an essential role in the visual cycle, as the preferential natural retinoids that bind to and modulate the function of TLX. Molecular dynamics simulations followed by mutational analysis provided insight into the molecular basis of retinoid binding to TLX. Our data support the validity of TLX as a target for development of therapeutics to treat cognitive disorders and/or glioblastomas.


Assuntos
Produtos Biológicos/química , Receptores Citoplasmáticos e Nucleares/química , Retinoides/química , Sítios de Ligação/efeitos dos fármacos , Produtos Biológicos/síntese química , Produtos Biológicos/farmacologia , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Ligantes , Masculino , Simulação de Dinâmica Molecular , Estrutura Molecular , Receptores Nucleares Órfãos , Receptores Citoplasmáticos e Nucleares/agonistas , Retinoides/síntese química , Retinoides/farmacologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA