Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Environ Health ; 18(1): 51, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31174534

RESUMO

BACKGROUND: Growing evidence indicates that in utero arsenic exposures in humans may increase the risk of adverse health effects and development of diseases later in life. This study aimed to evaluate potential health risks of in utero arsenic exposure on genetic damage in newborns in relation to maternal arsenic exposure. METHODS: A total of 205 pregnant women residing in arsenic-contaminated areas in Hanam province, Vietnam, were recruited. Prenatal arsenic exposure was determined by arsenic concentration in mother's toenails and urine during pregnancy and in umbilical cord blood collected at delivery. Genetic damage in newborns was assessed by various biomarkers of early genetic effects including oxidative/nitrative DNA damage (8-hydroxydeoxyguanosine, 8-OHdG, and 8-nitroguanine), DNA strand breaks and micronuclei (MN) in cord blood. RESULTS: Maternal arsenic exposure, measured by arsenic levels in toenails and urine, was significantly increased (p <  0.05) in subjects residing in areas with high levels of arsenic contamination in drinking water. Cord blood arsenic level was significantly increased in accordance with maternal arsenic exposure (p <  0.001). Arsenic exposure in utero is associated with genotoxic effects in newborns indicated as increased levels of 8-OHdG, 8-nitroguanine, DNA strand breaks and MN frequency in cord blood with increasing levels of maternal arsenic exposure. Maternal toenail arsenic level was significantly associated with all biomarkers of early genetic effects, while cord blood arsenic levels associated with DNA strand breaks and MN frequency. CONCLUSIONS: In utero arsenic exposure is associated with various types of genetic damage in newborns potentially contributing to the development of diseases, including cancer, later in life.


Assuntos
Arsênio/toxicidade , Dano ao DNA/efeitos dos fármacos , Sangue Fetal/química , Exposição Materna/efeitos adversos , Micronúcleos com Defeito Cromossômico/efeitos dos fármacos , Adulto , Biomarcadores/sangue , Feminino , Humanos , Recém-Nascido , Unhas/química , Gravidez , Vietnã , Adulto Jovem
3.
Toxicol Appl Pharmacol ; 316: 36-47, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28025110

RESUMO

Early-life exposure to arsenic increases risk of developing a variety of non-malignant and malignant diseases. Arsenic-induced carcinogenesis may be mediated through epigenetic mechanisms and pathways leading to inflammation. Our previous study reported that prenatal arsenic exposure leads to increased mRNA expression of several genes related to inflammation, including COX2, EGR1, and SOCS3. This study aimed to investigate the effects of arsenic exposure on promoter DNA methylation and mRNA expression of these inflammatory genes (COX2, EGR1, and SOCS3), as well as the generation of 8-nitroguanine, which is a mutagenic DNA lesion involved in inflammation-related carcinogenesis. Prenatally arsenic-exposed newborns had promoter hypomethylation of COX2, EGR1, and SOCS3 in cord blood lymphocytes (p<0.01). A follow-up study in these prenatally arsenic-exposed children showed a significant hypomethylation of these genes in salivary DNA (p<0.01). In vitro experiments confirmed that arsenite treatment at short-term high doses (10-100µM) and long-term low doses (0.5-1µM) in human lymphoblasts (RPMI 1788) caused promoter hypomethylation of these genes, which was in concordance with an increase in their mRNA expression. Additionally, the level of urinary 8-nitroguanine was significantly higher (p<0.01) in exposed newborns and children, by 1.4- and 1.8-fold, respectively. Arsenic accumulation in toenails was negatively correlated with hypomethylation of these genes and positively correlated with levels of 8-nitroguanine. These results indicated that early-life exposure to arsenic causes hypomethylation of COX2, EGR1, and SOCS3, increases mRNA expression of these genes, and increases 8-nitroguanine formation. These effects may be linked to mechanisms of arsenic-induced inflammation and cancer development later in life.


Assuntos
Arsênio/toxicidade , Ciclo-Oxigenase 2/metabolismo , Metilação de DNA/fisiologia , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Guanina/análogos & derivados , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Biomarcadores/metabolismo , Biomarcadores/urina , Criança , Ciclo-Oxigenase 2/genética , Metilação de DNA/efeitos dos fármacos , Proteína 1 de Resposta de Crescimento Precoce/genética , Exposição Ambiental , Feminino , Sangue Fetal/efeitos dos fármacos , Sangue Fetal/metabolismo , Seguimentos , Guanina/urina , Humanos , Recém-Nascido , Mediadores da Inflamação/metabolismo , Masculino , Unhas/química , Unhas/efeitos dos fármacos , Unhas/metabolismo , Gravidez , Proteína 3 Supressora da Sinalização de Citocinas/genética , Tailândia
4.
Environ Health ; 11: 31, 2012 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-22551203

RESUMO

BACKGROUND: Accumulating evidence indicates that in utero exposure to arsenic is associated with congenital defects and long-term disease consequences including cancers. Recent studies suggest that arsenic carcinogenesis results from epigenetic changes, particularly in DNA methylation. This study aimed to investigate DNA methylation changes as a result of arsenic exposure in utero and in vitro. METHODS: For the exposure in utero study, a total of seventy-one newborns (fifty-five arsenic-exposed and sixteen unexposed newborns) were recruited. Arsenic concentrations in the drinking water were measured, and exposure in newborns was assessed by measurement of arsenic concentrations in cord blood, nails and hair by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). In the in vitro study, human lymphoblasts were treated with arsenite at 0-100 µM for two, four and eight hours (short-term) and at 0, 0.5 and 1.0 µM for eight-weeks period (long-term). DNA methylation was analyzed in cord blood lymphocytes and lymphoblasts treated with arsenite in vitro. Global DNA methylation was determined as LINE-1 methylation using combined bisulfite restriction analysis (COBRA) and total 5-methyldeoxycytidine (5MedC) content which was determined by HPLC-MS/MS. Methylation of p53 was determined at the promoter region using methylation-specific restriction endonuclease digestion with MspI and HpaII. RESULTS: Results showed that arsenic-exposed newborns had significantly higher levels of arsenic in cord blood, fingernails, toenails and hair than those of the unexposed subjects and a slight increase in promoter methylation of p53 in cord blood lymphocytes which significantly correlated with arsenic accumulation in nails (p < 0.05) was observed, while LINE-1 methylation was unchanged. Short-term in vitro arsenite treatment in lymphoblastoid cells clearly demonstrated a significant global hypomethylation, determined as reduction in LINE-1 methylation and total 5-MedC content, and p53 hypermethylation (p < 0.05). However, a slight LINE-1 hypomethylation and transient p53 promoter hypermethylation were observed following long-term in vitro treatment. CONCLUSIONS: This study provides an important finding that in utero arsenic exposure affects DNA methylation, particularly at the p53 promoter region, which may be linked to the mechanism of arsenic carcinogenesis and the observed increased incidence of cancer later in life.


Assuntos
Arsênio/análise , Metilação de DNA , Poluentes Ambientais/análise , Sangue Fetal/química , Arsênio/toxicidade , Linhagem Celular , Monitoramento Ambiental , Poluentes Ambientais/toxicidade , Feminino , Cabelo/química , Humanos , Recém-Nascido , Linfócitos/citologia , Troca Materno-Fetal , Unhas/química , Gravidez , Regiões Promotoras Genéticas , Proteína Supressora de Tumor p53/genética , Abastecimento de Água/análise
5.
Chem Biol Interact ; 361: 109965, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35490796

RESUMO

Growing evidence suggests that arsenic exposure increases the risk of developing a variety of inflammation-associated chronic diseases and cancers. Our previous study revealed that increased transcript levels of inflammatory genes (i.e. COX2, EGR1, and SOCS3) coupled with hypomethylation of the promoter regions of these genes was associated with increased DNA damage in arsenic-exposed newborns through their early childhood. This study further investigated the ability of the methyl group donors, S-adenosyl methionine (SAM) and folic acid, to prevent promoter hypomethylation that results in decreased mRNA expression of inflammatory genes (COX2, EGR1, and SOCS3), and a reduction in arsenic-induced oxidative and nitrative DNA damage in human lymphoblast cells. Pretreatment with SAM (100 nM, 2 days) increased promoter methylation, reduced the mRNA levels of these inflammatory genes, and decreased both 8-hydroxydeoxyguanosine (8-OHdG) and 8-nitroguanine levels by 50% (p < 0.01) in arsenic-treated cells. In addition, pretreatment with folic acid (10 µM, 7 days), a micronutrient, led to a significant increase in promoter methylation associated with the reduction in mRNA levels of these inflammatory genes and decreased levels of 8-OHdG and 8-nitroguanine by 80% and 90% (p < 0.01), respectively, compared with arsenic treatment alone. Moreover, pretreatments with these methyl group donors increased mRNA expression of an antioxidant defense regulator (Nrf2) and DNA repair genes (hOGG1, XRCC1, and PARP1). This study shows for the first time that SAM or folic acid supplementation can prevent arsenic-induced oxidative and nitrative DNA damage. This suggests the potential use of SAM or folic acid for prevention of arsenic toxicity in human populations.


Assuntos
Arsênio , 8-Hidroxi-2'-Desoxiguanosina , Arsênio/toxicidade , Pré-Escolar , Ciclo-Oxigenase 2 , Dano ao DNA , Metilação de DNA , Reparo do DNA , Ácido Fólico/farmacologia , Humanos , Recém-Nascido , Estresse Oxidativo , RNA Mensageiro/genética , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
6.
Oncol Lett ; 16(2): 1529-1538, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30008833

RESUMO

Cholangiocarcinoma (CCA) is a severe cancer with poor prognosis. The aim of the present study was to explore the expression of argininosuccinate synthetase (ASS), as well as the possibility of using pegylated arginine deiminase (ADI-PEG20) for the treatment of CCA. ASS expression was determined in CCA specimens from 40 patients in Thailand. Immunohistochemical detection of ASS and determination of the proliferative index, Ki-67, were carried out in paraffin-embedded sections of these specimens, as well as in two CCA cell lines, HuCCA and RmCCA-1, derived from CCA samples from patients in Thailand. In total, ~45% of the CCA specimens had low ASS expression, and the level of expression was significantly negatively associated with cell differentiation (P<0.05) and Ki-67 expression (P<0.05). The level of ASS expression in tumor cells was significantly lower than that in non-tumor cells (1.3-fold, P<0.05). The HuCCA cell line had significantly lower levels (P<0.05) of ASS expression at the mRNA and protein levels relative to those of normal human immortalized fibroblast cells (BJ-1). By contrast, the RmCCA-1 cell line showed no significant difference. In addition, the effects of ADI-PEG20 on growth inhibition, apoptosis and cell cycle arrest were determined in HuCCA and RmCCA-1 cells. ADI-PEG20 treatment reduced cell viability and cell proliferation in the two CCA cell lines, though it had no effect in immortalized BJ-1 cells. Furthermore, ADI-PEG20 treatment significantly increased G0/G1 cell cycle arrest in HuCCA, though not in RmCCA-1 cells. ASS silencing in the RmCCA-1 cell line significantly enhanced its sensitivity to ADI-PEG20 treatment. Results from the in vitro study demonstrated that ADI-PEG20 has antitumor activity against CCA with low ASS expression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA