Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 127(24): 246401, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34951794

RESUMO

In contrast to the common conception that the interfacial energy-level alignment is affixed once the interface is formed, we demonstrate that heterojunctions between organic semiconductors and metal-halide perovskites exhibit huge energy-level realignment during photoexcitation. Importantly, the photoinduced level shifts occur in the organic component, including the first molecular layer in direct contact with the perovskite. This is caused by charge-carrier accumulation within the organic semiconductor under illumination and the weak electronic coupling between the junction components.

2.
J Phys Chem Lett ; 14(18): 4200-4210, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37115820

RESUMO

Mobile ions in perovskite photovoltaic devices can hinder performance and cause degradation by impeding charge extraction and screening the internal field. Accurately quantifying mobile ion densities remains a challenge and is a highly debated topic. We assess the suitability of several experimental methodologies for determining mobile ion densities by using drift-diffusion simulations. We found that charge extraction by linearly increasing voltage (CELIV) underestimates ion density, but bias-assisted charge extraction (BACE) can accurately reproduce ionic lower than the electrode charge. A modified Mott-Schottky (MS) analysis at low frequencies can provide ion density values for high excess ionic densities, typical for perovskites. The most significant contribution to capacitance originates from the ionic depletion layer rather than the accumulation layer. Using low-frequency MS analysis, we also demonstrate light-induced generation of mobile ions. These methods enable accurate tracking of ionic densities during device aging and a deeper understanding of ionic losses.

3.
ACS Nano ; 17(4): 3289-3300, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36790329

RESUMO

Halide perovskite light-emitting diodes (PeLEDs) exhibit great potential for use in next-generation display technologies. However, scale-up will be challenging due to the requirement of very thin transport layers for high efficiencies, which often present spatial inhomogeneities from improper wetting and drying during solution processing. Here, we show how a thin Al2O3 layer grown by atomic layer deposition can be used to preferentially cover regions of imperfect hole transport layer deposition and form an intermixed composite with the organic transport layer, allowing hole conduction and injection to persist through the organic hole transporter. This has the dual effect of reducing nonradiative recombination at the heterojunction and improving carrier selectivity, which we infer to be due to the inhibition of direct contact between the indium tin oxide and perovskite layers. We observe an immediate improvement in electroluminescent external quantum efficiency in our p-i-n LEDs from an average of 9.8% to 13.5%, with a champion efficiency of 15.0%. The technique uses industrially available equipment and can readily be scaled up to larger areas and incorporated in other applications such as thin-film photovoltaic cells.

4.
Science ; 381(6653): 63-69, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37410849

RESUMO

Improved stability and efficiency of two-terminal monolithic perovskite-silicon tandem solar cells will require reductions in recombination losses. By combining a triple-halide perovskite (1.68 electron volt bandgap) with a piperazinium iodide interfacial modification, we improved the band alignment, reduced nonradiative recombination losses, and enhanced charge extraction at the electron-selective contact. Solar cells showed open-circuit voltages of up to 1.28 volts in p-i-n single junctions and 2.00 volts in perovskite-silicon tandem solar cells. The tandem cells achieve certified power conversion efficiencies of up to 32.5%.

5.
Nat Commun ; 13(1): 7454, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36460635

RESUMO

Inverted perovskite solar cells still suffer from significant non-radiative recombination losses at the perovskite surface and across the perovskite/C60 interface, limiting the future development of perovskite-based single- and multi-junction photovoltaics. Therefore, more effective inter- or transport layers are urgently required. To tackle these recombination losses, we introduce ortho-carborane as an interlayer material that has a spherical molecular structure and a three-dimensional aromaticity. Based on a variety of experimental techniques, we show that ortho-carborane decorated with phenylamino groups effectively passivates the perovskite surface and essentially eliminates the non-radiative recombination loss across the perovskite/C60 interface with high thermal stability. We further demonstrate the potential of carborane as an electron transport material, facilitating electron extraction while blocking holes from the interface. The resulting inverted perovskite solar cells deliver a power conversion efficiency of over 23% with a low non-radiative voltage loss of 110 mV, and retain >97% of the initial efficiency after 400 h of maximum power point tracking. Overall, the designed carborane based interlayer simultaneously enables passivation, electron-transport and hole-blocking and paves the way toward more efficient and stable perovskite solar cells.

6.
ACS Nano ; 14(7): 8855-8865, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32574037

RESUMO

Light-emitting diodes (LEDs) made from metal halide perovskites have demonstrated external electroluminescent quantum efficiencies (EQEEL) in excess of 20%. However, their poor operational stability, resulting in lifetimes of only tens to hundreds of hours, needs to be dramatically improved prior to commercial use. There is little consensus in the community upon which factors limit the stability of these devices. Here, we investigate the role played by ammonium cations on the operational stability. We vary the amount of phenylethylammonium bromide, a widely used alkylammonium salt, that we add to a precursor solution of CsPbBr3 and track changes in stability and EQEEL. We find that while phenylethylammonium bromide is beneficial in achieving high efficiency, it is highly detrimental to operational stability. We investigate material properties and electronic characteristics before and after degradation and find that both a reduction in the radiative efficiency of the emitter and significant changes in current-voltage characteristics explain the orders of magnitude drop in the EQEEL, which we attribute to increased ionic mobility. Our results suggest that engineering new contacts and further investigation into materials with lower ionic mobility should yield much improved stability of perovskite LEDs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA