Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 56(6): 1595-1599, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28071835

RESUMO

Intermittent energy sources, including solar and wind, require scalable, low-cost, multi-hour energy storage solutions in order to be effectively incorporated into the grid. All-Organic non-aqueous redox-flow batteries offer a solution, but suffer from rapid capacity fade and low Coulombic efficiency due to the high permeability of redox-active species across the battery's membrane. Here we show that active-species crossover is arrested by scaling the membrane's pore size to molecular dimensions and in turn increasing the size of the active material above the membrane's pore-size exclusion limit. When oligomeric redox-active organics (RAOs) were paired with microporous polymer membranes, the rate of active-material crossover was reduced more than 9000-fold compared to traditional separators at minimal cost to ionic conductivity. This corresponds to an absolute rate of RAO crossover of less than 3 µmol cm-2 day-1 (for a 1.0 m concentration gradient), which exceeds performance targets recently set forth by the battery industry. This strategy was generalizable to both high and low-potential RAOs in a variety of non-aqueous electrolytes, highlighting the versatility of macromolecular design in implementing next-generation redox-flow batteries.

2.
Nano Lett ; 15(9): 5724-9, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26237233

RESUMO

Redox flow batteries (RFBs) present unique opportunities for multi-hour electrochemical energy storage (EES) at low cost. Too often, the barrier for implementing them in large-scale EES is the unfettered migration of redox active species across the membrane, which shortens battery life and reduces Coulombic efficiency. To advance RFBs for reliable EES, a new paradigm for controlling membrane transport selectivity is needed. We show here that size- and ion-selective transport can be achieved using membranes fabricated from polymers of intrinsic microporosity (PIMs). As a proof-of-concept demonstration, a first-generation PIM membrane dramatically reduced polysulfide crossover (and shuttling at the anode) in lithium-sulfur batteries, even when sulfur cathodes were prepared as flowable energy-dense fluids. The design of our membrane platform was informed by molecular dynamics simulations of the solvated structures of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) vs lithiated polysulfides (Li2Sx, where x = 8, 6, and 4) in glyme-based electrolytes of different oligomer length. These simulations suggested polymer films with pore dimensions less than 1.2-1.7 nm might incur the desired ion-selectivity. Indeed, the polysulfide blocking ability of the PIM-1 membrane (∼0.8 nm pores) was improved 500-fold over mesoporous Celgard separators (∼17 nm pores). As a result, significantly improved battery performance was demonstrated, even in the absence of LiNO3 anode-protecting additives.

3.
J Am Chem Soc ; 136(9): 3647-54, 2014 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-24498862

RESUMO

A series of actinide-transition metal heterobimetallics has been prepared, featuring thorium, uranium, and cobalt. Complexes incorporating the binucleating ligand N[ο-(NHCH2P(i)Pr2)C6H4]3 with either Th(IV) (4) or U(IV) (5) and a carbonyl bridged [Co(CO)4](-) unit were synthesized from the corresponding actinide chlorides (Th: 2; U: 3) and Na[Co(CO)4]. Irradiation of the resulting isocarbonyls with ultraviolet light resulted in the formation of new species containing actinide-metal bonds in good yields (Th: 6; U: 7); this photolysis method provides a new approach to a relatively unusual class of complexes. Characterization by single-crystal X-ray diffraction revealed that elimination of the bridging carbonyl and formation of the metal-metal bond is accompanied by coordination of a phosphine arm from the N4P3 ligand to the cobalt center. Additionally, actinide-cobalt bonds of 3.0771(5) Å and 3.0319(7) Å for the thorium and uranium complexes, respectively, were observed. The solution-state behavior of the thorium complexes was evaluated using (1)H, (1)H-(1)H COSY, (31)P, and variable-temperature NMR spectroscopy. IR, UV-vis/NIR, and variable-temperature magnetic susceptibility measurements are also reported.

4.
J Am Chem Soc ; 135(37): 13965-71, 2013 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-24004416

RESUMO

The first examples of actinide complexes incorporating corrole ligands are presented. Thorium(IV) and uranium(IV) macrocycles of Mes2(p-OMePh)corrole were synthesized via salt metathesis with the corresponding lithium corrole in remarkably high yields (93% and 83%, respectively). Characterization by single-crystal X-ray diffraction revealed both complexes to be dimeric, having two metal centers bridged via bis(µ-chlorido) linkages. In each case, the corrole ring showed a large distortion from planarity, with the Th(IV) and U(IV) ions residing unusually far (1.403 and 1.330 Å, respectively) from the N4 plane of the ligand. (1)H NMR spectroscopy of both the Th and U dimers revealed dynamic solution behavior. In the case of the diamagnetic thorium corrole, variable-temperature, DOSY (diffusion-ordered) and EXSY (exhange) (1)H NMR spectroscopy was employed and supported that this behavior was due to an intrinsic pseudorotational mode of the corrole ring about the M-M axis. Additionally, the electronic structure of the actinide corroles was assessed using UV-vis spectroscopy, cyclic voltammetry, and variable-temperature magnetic susceptibility. This novel class of macrocyclic complexes provides a rich platform in an underdeveloped area for the study of nonaqueous actinide bonding and reactivity.

5.
J Cancer Policy ; 36: 100420, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36931624

RESUMO

Whilst Scottish healthcare policy has not yet set a clear direction for service transformation needed in lieu of budgetary constraints, it is important that policy makers are cognisant of where policy can support healthcare professionals to overcome barriers to service development, and better meet demand. An analysis of Scottish cancer policy is presented, informed by learning gained from supporting development of cancer services as a practitioner, insights from undertaking health service research, and known barriers to service developments. This paper is structured as five recommendations to policy-makers: the need to develop a shared understanding of quality care between policy makers and healthcare professionals to guide service development in the same direction; revisiting of partnership working given developing health and social care landscape; empowerment of national and regional networks and working groups to develop and implement Gold Standard care in speciality services; sustainability in the development of cancer services; and development of guidance relating to how services should be using and developing patient capacities.


Assuntos
Política de Saúde , Neoplasias , Humanos , Neoplasias/terapia , Escócia
6.
Inorg Chem ; 51(8): 4694-706, 2012 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-22458367

RESUMO

A series of divalent first row triflate complexes supported by the ligand tris(2-pyridylmethyl)amine (TPA) have been investigated as oxygen reduction catalysts for fuel cell applications. [(TPA)M(2+)](n+) (M = Mn, Fe, Co, Ni, and Cu) derivatives were synthesized and characterized by X-ray crystallography, cyclic voltammetry, NMR spectroscopy, magnetic susceptibility, IR spectroscopy, and conductance measurements. The stoichiometric and electrochemical O(2) reactivities of the series were examined. Rotating-ring disk electrode (RRDE) voltammetry was used to examine the catalytic activity of the complexes on a carbon support in acidic media, emulating fuel cell performance. The iron complex displayed a selectivity of 89% for four-electron conversion and demonstrated the fastest reaction kinetics, as determined by a kinetic current of 7.6 mA. Additionally, the Mn, Co, and Cu complexes all showed selective four-electron oxygen reduction (<28% H(2)O(2)) at onset potentials (~0.44 V vs RHE) comparable to state of the art molecular catalysts, while being straightforward to access synthetically and derived from nonprecious metals.


Assuntos
Fontes de Energia Elétrica , Compostos Organometálicos/química , Oxigênio/química , Piridinas/química , Elementos de Transição/química , Carbono/química , Eletroquímica , Polímeros de Fluorcarboneto/química
7.
ACS Cent Sci ; 3(5): 399-406, 2017 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-28573201

RESUMO

Selective ion transport across membranes is critical to the performance of many electrochemical energy storage devices. While design strategies enabling ion-selective transport are well-established, enhancements in membrane selectivity are made at the expense of ionic conductivity. To design membranes with both high selectivity and high ionic conductivity, there are cues to follow from biological systems, where regulated transport of ions across membranes is achieved by transmembrane proteins. The transport functions of these proteins are sensitive to their environment: physical or chemical perturbations to that environment are met with an adaptive response. Here we advance an analogous strategy for achieving adaptive ion transport in microporous polymer membranes. Along the polymer backbone are placed redox-active switches that are activated in situ, at a prescribed electrochemical potential, by the device's active materials when they enter the membrane's pore. This transformation has little influence on the membrane's ionic conductivity; however, the active-material blocking ability of the membrane is enhanced. We show that when used in lithium-sulfur batteries, these membranes offer markedly improved capacity, efficiency, and cycle-life by sequestering polysulfides in the cathode. The origins and implications of this behavior are explored in detail and point to new opportunities for responsive membranes in battery technology development.

8.
Chem Commun (Camb) ; 50(22): 2922-4, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24496484

RESUMO

A series of early transition metal corrole complexes has been prepared via salt metathesis with the corresponding lithium corrole. Their characterization by single crystal X-ray diffraction, NMR, and absorption spectroscopy is described. Organometallic derivatives of the titanium complex were obtained via treatment of 2 with NaCp* or ClMgCH2SiMe3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA