Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Fish Dis ; 41(2): 337-346, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29159889

RESUMO

In response to reported findings of infectious salmon anaemia virus (ISAV) in British Columbia (BC), Canada, in 2011, U.S. national, state and tribal fisheries managers and fish health specialists developed and implemented a collaborative ISAV surveillance plan for the Pacific Northwest region of the United States. Accordingly, over a 3-1/2-year period, 4,962 salmonids were sampled and successfully tested by real-time reverse-transcription PCR. The sample set included multiple tissues from free-ranging Pacific salmonids from coastal regions of Alaska and Washington and farmed Atlantic salmon (Salmo salar L.) from Washington, all representing fish exposed to marine environments. The survey design targeted physiologically compromised or moribund animals more vulnerable to infection as well as species considered susceptible to ISAV. Samples were handled with a documented chain of custody and testing protocols, and criteria for interpretation of test results were defined in advance. All 4,962 completed tests were negative for ISAV RNA. Results of this surveillance effort provide sound evidence to support the absence of ISAV in represented populations of free-ranging and marine-farmed salmonids on the northwest coast of the United States.


Assuntos
Doenças dos Peixes/epidemiologia , Isavirus/isolamento & purificação , Oncorhynchus mykiss , Infecções por Orthomyxoviridae/veterinária , Salmão , Alaska/epidemiologia , Animais , Doenças dos Peixes/virologia , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/virologia , Prevalência , Washington/epidemiologia
2.
Mol Ecol ; 23(10): 2473-85, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24762204

RESUMO

Studying the effect of similar environments on diverse genetic backgrounds has long been a goal of evolutionary biologists with studies typically relying on experimental approaches. Pink salmon, a highly abundant and widely ranging salmonid, provide a naturally occurring opportunity to study the effects of similar environments on divergent genetic backgrounds due to a strict two-year semelparous life history. The species is composed of two reproductively isolated lineages with overlapping ranges that share the same spawning and rearing environments in alternate years. We used restriction-site-associated DNA (RAD) sequencing to discover and genotype approximately 8000 SNP loci in three population pairs of even- and odd-year pink salmon along a latitudinal gradient in North America. We found greater differentiation within the odd-year than within the even-year lineage and greater differentiation in the southern pair from Puget Sound than in the northern Alaskan population pairs. We identified 15 SNPs reflecting signatures of parallel selection using both a differentiation-based method (BAYESCAN) and an environmental correlation method (BAYENV). These SNPs represent genomic regions that may be particularly informative in understanding adaptive evolution in pink salmon and exploring how differing genetic backgrounds within a species respond to selection from the same natural environment.


Assuntos
Evolução Biológica , Salmão/genética , Seleção Genética , Alaska , Animais , Teorema de Bayes , Variação Genética , Genótipo , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Análise Espaço-Temporal , Washington
3.
Virus Evol ; 7(1): veab008, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34168895

RESUMO

[This corrects the article DOI: 10.1093/ve/veaa054.].

4.
Mol Ecol ; 19(17): 3603-19, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20723066

RESUMO

Populations in fragmented landscapes experience reduced gene flow, lose genetic diversity over time and ultimately face greater extinction risk. Improving connectivity in fragmented landscapes is now a major focus of conservation biology. Designing effective wildlife corridors for this purpose, however, requires an accurate understanding of how landscapes shape gene flow. The preponderance of landscape resistance models generated to date, however, is subjectively parameterized based on expert opinion or proxy measures of gene flow. While the relatively few studies that use genetic data are more rigorous, frameworks they employ frequently yield models only weakly related to the observed patterns of genetic isolation. Here, we describe a new framework that uses expert opinion as a starting point. By systematically varying each model parameter, we sought to either validate the assumptions of expert opinion, or identify a peak of support for a new model more highly related to genetic isolation. This approach also accounts for interactions between variables, allows for nonlinear responses and excludes variables that reduce model performance. We demonstrate its utility on a population of mountain goats inhabiting a fragmented landscape in the Cascade Range, Washington.


Assuntos
Fluxo Gênico , Genética Populacional , Cabras/genética , Modelos Biológicos , Animais , Ecologia/métodos , Ecossistema , Genótipo , Geografia , Análise de Componente Principal , Washington
5.
Virus Evol ; 6(2): veaa054, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33381304

RESUMO

Piscine orthoreovirus (PRV-1) is a segmented RNA virus, which is commonly found in salmonids in the Atlantic and Pacific Oceans. PRV-1 causes the heart and skeletal muscle inflammation disease in Atlantic salmon and is associated with several other disease conditions. Previous phylogenetic studies of genome segment 1 (S1) identified four main genogroups of PRV-1 (S1 genogroups I-IV). The goal of the present study was to use Bayesian phylogenetic inference to expand our understanding of the spatial, temporal, and host patterns of PRV-1 from the waters of the northeast Pacific. To that end, we determined the coding genome sequences of fourteen PRV-1 samples that were selected to improve our knowledge of genetic diversity across a broader temporal, geographic, and host range, including the first reported genome sequences from the northwest Atlantic (Eastern Canada). Nucleotide and amino acid sequences of the concatenated genomes and their individual segments revealed that established sequences from the northeast Pacific were monophyletic in all analyses. Bayesian inference phylogenetic trees of S1 sequences using BEAST and MrBayes also found that sequences from the northeast Pacific grouped separately from sequences from other areas. One PRV-1 sample (WCAN_BC17_AS_2017) from an escaped Atlantic salmon, collected in British Columbia but derived from Icelandic broodstock, grouped with other S1 sequences from Iceland. Our concatenated genome and S1 analysis demonstrated that PRV-1 from the northeast Pacific is genetically distinct but descended from PRV-1 from the North Atlantic. However, the analyses were inconclusive as to the timing and exact source of introduction into the northeast Pacific, either from eastern North America or from European waters of the North Atlantic. There was no evidence that PRV-1 was evolving differently between free-ranging Pacific Salmon and farmed Atlantic Salmon. The northeast Pacific PRV-1 sequences fall within genogroup II based on the classification of Garseth, Ekrem, and Biering (Garseth, A. H., Ekrem, T., and Biering, E. (2013) 'Phylogenetic Evidence of Long Distance Dispersal and Transmission of Piscine Reovirus (PRV) between Farmed and Wild Atlantic Salmon', PLoS One, 8: e82202.), which also includes North Atlantic sequences from Eastern Canada, Iceland, and Norway. The additional full-genome sequences herein strengthen our understanding of phylogeographical patterns related to the northeast Pacific, but a more balanced representation of full PRV-1 genomes from across its range, as well additional sequencing of archived samples, is still needed to better understand global relationships including potential transmission links among regions.

6.
Mol Ecol ; 17(22): 4859-73, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19140977

RESUMO

Understanding the factors that influence population differentiation in temperate taxa can be difficult because the signatures of both historic and contemporary demographics are often reflected in population genetic patterns. Fortunately, analyses based on coalescent theory can help untangle the relative influence of these historic and contemporary factors. Common murres (Uria aalge) are vagile seabirds that breed in the boreal and low arctic waters of the Northern Hemisphere. Previous analyses revealed that Atlantic and Pacific populations are genetically distinct; however, less is known about population genetic structure within ocean basins. We employed the mitochondrial control region, four microsatellite loci and four intron loci to investigate population genetic structure throughout the range of common murres. As in previous studies, we found that Atlantic and Pacific populations diverged during the Pleistocene and do not currently exchange migrants. Therefore, Atlantic and Pacific murre populations can be used as natural replicates to test mechanisms of population differentiation. While we found little population genetic structure within the Pacific, we detected significant east-west structuring among Atlantic colonies. The degree that population genetic structure reflected contemporary population demographics also differed between ocean basins. Specifically, while the low levels of population differentiation in the Pacific are at least partially due to high levels of contemporary gene flow, the east-west structuring of populations within the Atlantic appears to be the result of historic fragmentation of populations rather than restricted contemporary gene flow. The contrasting results in the Atlantic and Pacific Oceans highlight the necessity of carefully considering multilocus nonequilibrium population genetic approaches when reconstructing the demographic history of temperate Northern Hemisphere taxa.


Assuntos
Charadriiformes/genética , Evolução Molecular , Genética Populacional , Animais , Oceano Atlântico , Charadriiformes/classificação , DNA Mitocondrial/genética , Fluxo Gênico , Especiação Genética , Variação Genética , Geografia , Íntrons , Repetições de Microssatélites , Modelos Genéticos , Oceano Pacífico , Dinâmica Populacional , Análise de Sequência de DNA
7.
Mol Ecol ; 15(9): 2317-32, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16842408

RESUMO

Both current and historical patterns of variation are relevant to understanding and managing ecological diversity. Recently derived species present a challenge to the reconstruction of historical patterns because neutral molecular data for these taxa are more likely to exhibit effects of recent and ongoing demographic processes. We studied geographical patterns of neutral molecular variation in a species thought to be of relatively recent origin, Tympanuchus phasianellus (sharp-tailed grouse), using mitochondrial control region sequences (CR-I), amplified fragment length polymorphisms (AFLP), and microsatellites. For historical context, we also analysed CR-I in all species of Tympanuchus. Within T. phasianellus, we found evidence for restricted gene flow between eastern and western portions of the species range, generally corresponding with the range boundary of T. p. columbianus and T. p. jamesi. The mismatch distribution and molecular clock estimates from the CR-I data suggested that all Tympanuchus underwent a range expansion prior to sorting of mitotypes among the species, and that sorting may have been delayed as a result of mutation-drift disequilibrium. This study illustrates the challenge of using genetic data to detect historical divergence in groups that are of relatively recent origin, or that have a history dominated by nonequilibrium conditions. We suggest that in such cases, morphological, ecological, and behavioural data may be particularly important adjuncts to molecular data for the recognition of historically or adaptively divergent groups.


Assuntos
Galliformes/genética , Galliformes/fisiologia , Variação Genética/genética , Animais , Canadá , Núcleo Celular/genética , Mitocôndrias/genética , Filogenia , Dinâmica Populacional , Estados Unidos
8.
Genetica ; 112-113: 399-415, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11838778

RESUMO

Populations of the lizards Anolis carolinensis and A. sagrei were experimentally introduced onto small islands in the Bahamas. Less than 15 years after introduction, we investigated whether the populations had diverged and, if so, whether differentiation was related to island vegetational characteristics or propagule size. No effect of founding population size was evident, but differentiation of A. sagrei appears to have been adaptive, a direct relationship existed between how vegetationally different an experimental island was from the source island and how much the experimental population on that island had diverged morphologically. Populations of A. carolinensis had also diverged, but were too few for quantitative comparisons. A parallel exists between the divergence of experimental populations of A. sagrei and the adaptive radiation of Anolis lizards in the Greater Antilles; in both cases, relative hindlimb length and perch diameter are strongly correlated. This differentiation could have resulted from genetic change or environmentally-driven phenotypic plasticity. Laboratory studies on A. sagrei from a population in Florida indicate that hindlimb length exhibits adaptive phenotypic plasticity. Further studies are required to determine if the observed differences among the experimental populations are the result of such plasticity. Regardless of whether the differences result from plasticity, genetic change, or both, the observation that anole populations differentiate rapidly and adaptively when exposed to novel environmental conditions has important implications for understanding the adaptive radiation of Caribbean anoles.


Assuntos
Adaptação Biológica/genética , Evolução Biológica , Lagartos/genética , Animais , Comportamento Animal , Extremidades/anatomia & histologia , Lagartos/anatomia & histologia , Masculino , Análise de Componente Principal , Análise de Regressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA