Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Nat Methods ; 5(4): 347-53, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18311145

RESUMO

We developed an algorithm, Lever, that systematically maps metazoan DNA regulatory motifs or motif combinations to sets of genes. Lever assesses whether the motifs are enriched in cis-regulatory modules (CRMs), predicted by our PhylCRM algorithm, in the noncoding sequences surrounding the genes. Lever analysis allows unbiased inference of functional annotations to regulatory motifs and candidate CRMs. We used human myogenic differentiation as a model system to statistically assess greater than 25,000 pairings of gene sets and motifs or motif combinations. We assigned functional annotations to candidate regulatory motifs predicted previously and identified gene sets that are likely to be co-regulated via shared regulatory motifs. Lever allows moving beyond the identification of putative regulatory motifs in mammalian genomes, toward understanding their biological roles. This approach is general and can be applied readily to any cell type, gene expression pattern or organism of interest.


Assuntos
Biologia Computacional/métodos , DNA/genética , Elementos Reguladores de Transcrição/genética , Sequências Reguladoras de Ácido Nucleico/genética , Algoritmos , Animais , Genoma , Humanos , Dados de Sequência Molecular , Especificidade da Espécie
2.
PLoS One ; 4(4): e5242, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19370158

RESUMO

BACKGROUND: Calorie restriction (CR) is the only intervention known to extend lifespan in a wide range of organisms, including mammals. However, the mechanisms by which it regulates mammalian aging remain largely unknown, and the involvement of the TOR and sirtuin pathways (which regulate aging in simpler organisms) remain controversial. Additionally, females of most mammals appear to live longer than males within species; and, although it remains unclear whether this holds true for mice, the relationship between sex-biased and CR-induced gene expression remains largely unexplored. METHODOLOGY/PRINCIPAL FINDINGS: We generated microarray gene expression data from livers of male mice fed high calorie or CR diets, and we find that CR significantly changes the expression of over 3,000 genes, many between 10- and 50-fold. We compare our data to the GenAge database of known aging-related genes and to prior microarray expression data of genes expressed differently between male and female mice. CR generally feminizes gene expression and many of the most significantly changed individual genes are involved in aging, hormone signaling, and p53-associated regulation of the cell cycle and apoptosis. Among the genes showing the largest and most statistically significant CR-induced expression differences are Ddit4, a key regulator of the TOR pathway, and Nnmt, a regulator of lifespan linked to the sirtuin pathway. Using western analysis we confirmed post-translational inhibition of the TOR pathway. CONCLUSIONS: Our data show that CR induces widespread gene expression changes and acts through highly evolutionarily conserved pathways, from microorganisms to mammals, and that its life-extension effects might arise partly from a shift toward a gene expression profile more typical of females.


Assuntos
Envelhecimento/metabolismo , Restrição Calórica , Regulação da Expressão Gênica , Longevidade , Envelhecimento/genética , Animais , Apoptose/fisiologia , Proteínas de Transporte/metabolismo , Ciclo Celular/fisiologia , Feminino , Perfilação da Expressão Gênica , Hormônios/fisiologia , Fígado/metabolismo , Masculino , Camundongos , Nitrosaminas/metabolismo , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fatores Sexuais , Transdução de Sinais/fisiologia , Sirtuínas/metabolismo , Serina-Treonina Quinases TOR , Fatores de Transcrição/metabolismo , Tiramina/análogos & derivados , Tiramina/metabolismo
3.
Nat Biotechnol ; 27(11): 1025-31, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19881494

RESUMO

Targeted enrichment of specific loci of the human genome is a promising approach to enable sequencing-based studies of genetic variation in large populations. Here we describe an enrichment approach based on microdroplet PCR, which enables 1.5 million amplifications in parallel. We sequenced six samples enriched by microdroplet or traditional singleplex PCR using primers targeting 435 exons of 47 genes. Both methods generated similarly high-quality data: 84% of the uniquely mapping reads fell within the targeted sequences; coverage was uniform across approximately 90% of targeted bases; sequence variants were called with >99% accuracy; and reproducibility between samples was high (r(2) = 0.9). We scaled the microdroplet PCR to 3,976 amplicons totaling 1.49 Mb of sequence, sequenced the resulting sample with both Illumina GAII and Roche 454, and obtained data with equally high specificity and sensitivity. Our results demonstrate that microdroplet technology is well suited for processing DNA for massively parallel enrichment of specific subsets of the human genome for targeted sequencing.


Assuntos
Microfluídica/métodos , Reação em Cadeia da Polimerase/métodos , Análise de Sequência de DNA/métodos , Sequência de Bases , Humanos , Mutação/genética , Reprodutibilidade dos Testes , Análise de Sequência de DNA/instrumentação
4.
Genome Res ; 18(10): 1638-42, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18775913

RESUMO

Forward genetic mutational studies, adaptive evolution, and phenotypic screening are powerful tools for creating new variant organisms with desirable traits. However, mutations generated in the process cannot be easily identified with traditional genetic tools. We show that new high-throughput, massively parallel sequencing technologies can completely and accurately characterize a mutant genome relative to a previously sequenced parental (reference) strain. We studied a mutant strain of Pichia stipitis, a yeast capable of converting xylose to ethanol. This unusually efficient mutant strain was developed through repeated rounds of chemical mutagenesis, strain selection, transformation, and genetic manipulation over a period of seven years. We resequenced this strain on three different sequencing platforms. Surprisingly, we found fewer than a dozen mutations in open reading frames. All three sequencing technologies were able to identify each single nucleotide mutation given at least 10-15-fold nominal sequence coverage. Our results show that detecting mutations in evolved and engineered organisms is rapid and cost-effective at the whole-genome level using new sequencing technologies. Identification of specific mutations in strains with altered phenotypes will add insight into specific gene functions and guide further metabolic engineering efforts.


Assuntos
Análise Mutacional de DNA/métodos , Genoma Fúngico , Mutação , Pichia/genética , Alinhamento de Sequência , Análise de Sequência de DNA
5.
J Biol Chem ; 277(44): 41897-905, 2002 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-12202476

RESUMO

Mannose phosphorylation of N-linked oligosaccharides by UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase is a key step in the targeting of lysosomal enzymes in mammalian cells and tissues. The selectivity of this process is determined by lysine-based phosphorylation signals shared by lysosomal enzymes of diverse structure and function. By introducing new glycosylation sites at several locations on the surface of mouse procathepsin L and modeling oligosaccharide conformations for sites that are phosphorylated, it was shown that the inherent flexibility of N-linked oligosaccharides can account for the specificity of the transferase for oligosaccharides at different locations on the protein. By using this approach, the physical relationship between the lysine-based signal and the site of phosphorylation of mannose residues was determined. The analysis also revealed the existence of additional independent lysine-based phosphorylation signals on procathepsin L, which account for the low level of phosphorylation observed when the primary Lys-54/Lys-99 signal is ablated. Mutagenesis of residues that surround Lys-54 and Lys-99 and demonstration of mannose phosphorylation of a glycosylated derivative of green fluorescent protein provide strong evidence that the cathepsin L phosphorylation signal is a simple structure composed of as few as two well placed lysine residues.


Assuntos
Catepsinas/química , Lisossomos/enzimologia , Manose/metabolismo , Oligossacarídeos/química , Animais , Células COS , Catepsina L , Catepsinas/metabolismo , Cisteína Endopeptidases , Glicosilação , Proteínas de Fluorescência Verde , Proteínas Luminescentes/metabolismo , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA