Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 16(22): 10629-42, 2014 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-24752662

RESUMO

Atmospheric absorption by brown carbon aerosol may play an important role in global radiative forcing. Brown carbon arises from both primary and secondary sources, but the mechanisms and reactions of the latter are highly uncertain. One proposed mechanism is the reaction of ammonia or amino acids with carbonyl products in secondary organic aerosol (SOA). We generated SOA in situ by reacting biogenic alkenes (α-pinene, limonene, and α-humulene) with excess ozone, humidifying the resulting aerosol, and reacting the humidified aerosol with gaseous ammonia. We determined the complex refractive indices (RI) in the 360-420 nm range for these aerosols using broadband cavity enhanced spectroscopy (BBCES). The average real part (n) of the measured spectral range of the NH3-aged α-pinene SOA increased from n = 1.50 (±0.01) for the unreacted SOA to n = 1.57 (±0.01) after 1.5 h of exposure to 1.9 ppm NH3, whereas the imaginary component (k) remained below k < 0.001((+0.002)(-0.001)). For the limonene and α-humulene SOA the real part did not change significantly, and we observed a small change in the imaginary component of the RI. The imaginary component increased from k = 0.000 to an average k = 0.029 (±0.021) for α-humulene SOA, and from k < 0.001((+0.002)(-0.001)) to an average k = 0.032 (±0.019) for limonene SOA after 1.5 h of exposure to 1.3 and 1.9 ppm of NH3, respectively. Collected filter samples of the aged and unreacted α-pinene SOA and limonene SOA were analyzed off-line by nanospray desorption electrospray ionization high resolution mass spectrometry (nano-DESI/HR-MS), and in situ using a Time-of-Flight Aerosol Mass Spectrometer (ToF-AMS), confirming that the SOA reacted and that various nitrogen-containing reaction products formed. If we assume that NH3 aging reactions scale linearly with time and concentration, which will not necessarily be the case in the atmosphere, then a 1.5 h reaction with 1 ppm NH3 in the laboratory is equivalent to 24 h reaction with 63 ppbv NH3, indicating that the observed aerosol absorption will be limited to atmospheric regions with high NH3 concentrations.


Assuntos
Amônia/química , Aerossóis/química , Estrutura Molecular , Espectrofotometria Ultravioleta
2.
Environ Sci Technol ; 45(7): 2938-44, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21366216

RESUMO

Ozone plays a key role in both the Earth's radiative budget and photochemistry. Accurate, robust analytical techniques for measuring its atmospheric abundance are of critical importance. Cavity ring-down spectroscopy has been successfully used for sensitive and accurate measurements of many atmospheric species. However, this technique has not been used for atmospheric measurements of ozone, because the strongest ozone absorption bands occur in the ultraviolet spectral region, where Rayleigh and Mie scattering cause significant cavity losses and dielectric mirror reflectivities are limited. Here, we describe a compact instrument that measures O3 by chemical conversion to NO2 in excess NO, with subsequent detection by cavity ring-down spectroscopy. This method provides a simple, accurate, and high-precision measurement of atmospheric ozone. The instrument consists of two channels. The sum of NO2 and converted O3 (defined as Ox) is measured in the first channel, while NO2 alone is measured in the second channel. NO2 is directly detected in each channel by cavity ring-down spectroscopy with a laser diode light source at 404 nm. The limit of detection for O3 is 26 pptv (2 sigma precision) at 1 s time resolution. The accuracy of the measurement is ±2.2%, with the largest uncertainty being the effective NO2 absorption cross-section. The linear dynamic range of the instrument has been verified from the detection limit to above 200 ppbv (r2>99.99%). The observed precision on signal (2 sigma) with 41 ppbv O3 is 130 pptv in 1 s. Comparison of this instrument to UV absorbance instruments for ambient O3 concentrations shows linear agreement (r2=99.1%) with slope of 1.012±0.002.


Assuntos
Poluentes Atmosféricos/análise , Atmosfera/química , Monitoramento Ambiental/instrumentação , Ozônio/análise , Absorção , Monitoramento Ambiental/métodos , Limite de Detecção , Dióxido de Nitrogênio/análise
3.
Atmos Meas Tech ; 9(7): 3063-3093, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-29619117

RESUMO

Natural emissions of ozone-and-aerosol-precursor gases such as isoprene and monoterpenes are high in the southeast of the US. In addition, anthropogenic emissions are significant in the Southeast US and summertime photochemistry is rapid. The NOAA-led SENEX (Southeast Nexus) aircraft campaign was one of the major components of the Southeast Atmosphere Study (SAS) and was focused on studying the interactions between biogenic and anthropogenic emissions to form secondary pollutants. During SENEX, the NOAA WP-3D aircraft conducted 20 research flights between 27 May and 10 July 2013 based out of Smyrna, TN. Here we describe the experimental approach, the science goals and early results of the NOAA SENEX campaign. The aircraft, its capabilities and standard measurements are described. The instrument payload is summarized including detection limits, accuracy, precision and time resolutions for all gas-and-aerosol phase instruments. The inter-comparisons of compounds measured with multiple instruments on the NOAA WP-3D are presented and were all within the stated uncertainties, except two of the three NO2 measurements. The SENEX flights included day- and nighttime flights in the Southeast as well as flights over areas with intense shale gas extraction (Marcellus, Fayetteville and Haynesville shale). We present one example flight on 16 June 2013, which was a daytime flight over the Atlanta region, where several crosswind transects of plumes from the city and nearby point sources, such as power plants, paper mills and landfills, were flown. The area around Atlanta has large biogenic isoprene emissions, which provided an excellent case for studying the interactions between biogenic and anthropogenic emissions. In this example flight, chemistry in and outside the Atlanta plumes was observed for several hours after emission. The analysis of this flight showcases the strategies implemented to answer some of the main SENEX science questions.

4.
Environ Sci Technol ; 43(7): 2437-42, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19452898

RESUMO

A laser photoacoustic spectroscopy (LPAS) instrument was developed and used for aircraft measurements of ethene from industrial sources near Houston, Texas. The instrument provided 20 s measurements with a detection limit of less than 0.7 ppbv. Data from this instrument and from the GC-FID analysis of air samples collected in flight agreed within 15% on average. Ethene fluxes from the Mt. Belvieu chemical complex to the northeast of Houston were quantified during 10 different flights. The average flux was 520 +/- 140 kg h(-1) in agreement with independent results from solar occultation flux (SOF) measurements, and roughly an order of magnitude higher than regulatory emission inventories indicate. This study shows that ethene emissions are routinely at levels that qualify as emission upsets, which need to be reported to regional air quality managers.


Assuntos
Poluentes Atmosféricos/análise , Etilenos/análise , Análise Espectral/métodos , Acústica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA