Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 282
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 630(8016): 315-324, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38867130

RESUMO

Changes in the sea surface temperature (SST) pattern in the tropical Pacific modulate radiative feedbacks to greenhouse gas forcing, the pace of global warming and regional climate impacts. Therefore, elucidating the drivers of the pattern is critically important for reducing uncertainties in future projections. However, the causes of observed changes over recent decades, an enhancement of the zonal SST contrast coupled with a strengthening of the Walker circulation, are still debated. Here we focus on the role of external forcing and review existing mechanisms of the forced response categorized as either an energy perspective that adopts global and hemispheric energy budget constraints or a dynamical perspective that examines the atmosphere-ocean coupled processes. We then discuss their collective and relative contributions to the past and future SST pattern changes and propose a narrative that reconciles them. Although definitive evidence is not yet available, our assessment suggests that the zonal SST contrast has been dominated by strengthening mechanisms in the past, but will shift towards being dominated by weakening mechanisms in the future. Finally, we present opportunities to resolve the model-observations discrepancy regarding the recent trends.

2.
Nature ; 602(7898): 612-616, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35197617

RESUMO

Future projections of global mean precipitation change (ΔP) based on Earth-system models have larger uncertainties than projections of global mean temperature changes (ΔT)1. Although many observational constraints on ΔT have been proposed, constraints on ΔP have not been well studied2-5 and are often complicated by the large influence of aerosols on precipitation4. Here we show that the upper bound (95th percentile) of ΔP (2051-2100 minus 1851-1900, percentage of the 1980-2014 mean) is lowered from 6.2 per cent to 5.2-5.7 per cent (minimum-maximum range of sensitivity analyses) under a medium greenhouse gas concentration scenario. Our results come from the Coupled Model Intercomparison Project phase 5 and phase 6 ensembles6-8, in which ΔP for 2051-2100 is well correlated with the global mean temperature trends during recent decades after 1980 when global anthropogenic aerosol emissions were nearly constant. ΔP is also significantly correlated with the recent past trends in precipitation when we exclude the tropical land areas with few rain-gauge observations. On the basis of these significant correlations and observed trends, the variance of ΔP is reduced by 8-30 per cent. The observationally constrained ranges of ΔP should provide further reliable information for impact assessments.


Assuntos
Modelos Teóricos , Chuva , Incerteza , Aerossóis/provisão & distribuição , Atividades Humanas , Temperatura
3.
Plant Cell ; 34(5): 1844-1862, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35146519

RESUMO

Legumes have adaptive mechanisms that regulate nodulation in response to the amount of nitrogen in the soil. In Lotus japonicus, two NODULE INCEPTION (NIN)-LIKE PROTEIN (NLP) transcription factors, LjNLP4 and LjNLP1, play pivotal roles in the negative regulation of nodulation by controlling the expression of symbiotic genes in high nitrate conditions. Despite an improved understanding of the molecular basis for regulating nodulation, how nitrate plays a role in the signaling pathway to negatively regulate this process is largely unknown. Here, we show that nitrate transport via NITRATE TRANSPORTER 2.1 (LjNRT2.1) is a key step in the NLP signaling pathway to control nodulation. A mutation in the LjNRT2.1 gene attenuates the nitrate-induced control of nodulation. LjNLP1 is necessary and sufficient to induce LjNRT2.1 expression, thereby regulating nitrate uptake/transport. Our data suggest that LjNRT2.1-mediated nitrate uptake/transport is required for LjNLP4 nuclear localization and induction/repression of symbiotic genes. We further show that LjNIN, a positive regulator of nodulation, counteracts the LjNLP1-dependent induction of LjNRT2.1 expression, which is linked to a reduction in nitrate uptake. These findings suggest a plant strategy in which nitrogen acquisition switches from obtaining nitrogen from the soil to symbiotic nitrogen fixation.


Assuntos
Lotus , Regulação da Expressão Gênica de Plantas , Lotus/genética , Lotus/metabolismo , Nitratos/metabolismo , Nitrogênio/metabolismo , Proteínas de Plantas/metabolismo , Nodulação/genética , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo , Solo , Simbiose/fisiologia
4.
Biotechnol Appl Biochem ; 71(2): 264-271, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38010900

RESUMO

We previously found that ribosomal protein L9 (RPL9) is a novel advanced glycation end product (AGE)-binding protein that can decrease pro-inflammatory TNF-α expression stimulated by lipopolysaccharide (LPS) plus high-mobility group box 1 (HMGB1), suggesting that RPL9 has a role in regulating LPS+HMGB1-stimulated inflammatory reactions. Among the various ribosomal proteins, it was found that RPS5 reproduced the regulatory activity of RPL9 on LPS+HMGB1-stimulated TNF-α expression in macrophage-like RAW264.7 cells. RPL9 and RPS5 share a common feature as cationic proteins. Polylysine, a cationic polypeptide, and a synthetic peptide of the cationic region from RPL9 also exhibited reducing activity on LPS+HMGB1-induced TNF-α expression. By pull-down assay, RPL9 and RPS5 were confirmed to interact with AGEs. When AGEs coexisted with LPS, HMGB1, plus RPL9 or RPS5, the reducing effect of TNF-α expression by these cationic ribosomal proteins was shown to be abrogated. The results suggest that cationic ribosomal proteins have a regulatory role in the pro-inflammatory response induced by LPS+HMGB1, and in the pathophysiological condition of accumulating AGEs, this regulatory effect is abolished, which exacerbates inflammation.


Assuntos
Proteína HMGB1 , Lipopolissacarídeos , Humanos , Lipopolissacarídeos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Ribossômicas , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Produtos Finais de Glicação Avançada
5.
J Phys Ther Sci ; 36(4): 161-166, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38562539

RESUMO

[Purpose] The sense of vision is omitted in blind soccer, and sound source localization to grasp the position of the ball is extremely important. The purpose of this study was to clarify whether there is a difference in ability in sound source localization in its approaching condition between visually impaired and sighted people, using the source actually used in blind soccer ball competitions. [Participants and Methods] Eighteen participants were divided into two groups; 10 sighted people and eight visually impaired people. The participants were asked to press a switch when a rolling blind soccer ball was sensed in any one of the four directions. We recorded time error as the difference between the time when the ball passed the optical sensor set under the participant's feet and when the participant pressed the switch. [Results] The time error in response increased with the ball speed in all cases; however, its dependence on the ball speed was significantly different between the two groups. [Conclusion] The visually impaired participants made less time errors in response to the localization of the ball than the sighted participants, even when the ball speed increased. The results indicate that visually impaired people have better sound source localization ability than sighted people do.

6.
Proteins ; 91(9): 1341-1350, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37144255

RESUMO

TcXyn30A from Talaromyces cellulolyticus, which belongs to subfamily 7 of the glycoside hydrolase family 30 (GH30-7), releases xylose from the reducing end of xylan and xylooligosaccharides (XOSs), the so-called reducing-end xylose-releasing exoxylanase (ReX). In this study, the crystal structures of TcXyn30A with and without xylose at subsite +1 (the binding site of the xylose residue at the reducing end) were determined. This is the first report on the structure of ReX in the family GH30-7. TcXyn30A forms a dimer. The complex structure of TcXyn30A with xylose revealed that subsite +1 is located at the dimer interface. TcXyn30A recognizes xylose at subsite +1 composed of amino acid residues from each monomer and blocks substrate binding to subsite +2 by dimer formation. Thus, the dimeric conformation is responsible for ReX activity. The structural comparison between TcXyn30A and the homologous enzyme indicated that subsite -2 is composed of assembled three stacked Trp residues, Trp49, Trp333, and Trp334, allowing TcXyn30A to accommodate xylan and any branched XOSs decorated with a substitution such as α-1,2-linked 4-O-methyl-d-glucuronic acid or α-1,2- and/or -1,3-linked L-arabinofuranose. These findings provide an insight into the structural determinants for ReX activity of TcXyn30A.


Assuntos
Glicosídeo Hidrolases , Xilose , Glicosídeo Hidrolases/química , Xilose/química , Xilose/metabolismo , Xilanos/metabolismo , Oligossacarídeos/química , Especificidade por Substrato
7.
PLoS Pathog ; 17(9): e1009908, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34529742

RESUMO

Human parainfluenza virus type 1 (hPIV1) and 3 (hPIV3) cause seasonal epidemics, but little is known about their interaction with human airway cells. In this study, we determined cytopathology, replication, and progeny virion release from human airway cells during long-term infection in vitro. Both viruses readily established persistent infection without causing significant cytopathic effects. However, assembly and release of hPIV1 rapidly declined in sharp contrast to hPIV3 due to impaired viral ribonucleocapsid (vRNP) trafficking and virus assembly. Transcriptomic analysis revealed that both viruses induced similar levels of type I and III IFNs. However, hPIV1 induced specific ISGs stronger than hPIV3, such as MX2, which bound to hPIV1 vRNPs in infected cells. In addition, hPIV1 but not hPIV3 suppressed genes involved in lipid biogenesis and hPIV1 infection resulted in ubiquitination and degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, a rate limiting enzyme in cholesterol biosynthesis. Consequently, formation of cholesterol-rich lipid rafts was impaired in hPIV1 infected cells. These results indicate that hPIV1 is capable of regulating cholesterol biogenesis, which likely together with ISGs contributes to establishment of a quiescent infection.


Assuntos
Colesterol/biossíntese , Mucosa Respiratória/virologia , Infecções por Respirovirus/metabolismo , Infecções por Respirovirus/virologia , Células A549 , Humanos , Interferons/imunologia , Vírus da Parainfluenza 1 Humana/imunologia , Vírus da Parainfluenza 1 Humana/metabolismo , Vírus da Parainfluenza 3 Humana/imunologia , Vírus da Parainfluenza 3 Humana/metabolismo , Infecções por Respirovirus/imunologia
8.
Arch Biochem Biophys ; 750: 109808, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37918647

RESUMO

Advanced glycation end products (AGEs) are a heterogeneous group of compounds that are non-enzymatically produced by reactions between carbonyl compounds and proteins. Many types of AGEs are produced according to the type or concentration of the reacting carbonyl compound. We have previously demonstrated that a glycolaldehyde-derived AGE suppresses stimulator of interferon gene (STING)/TANK-binding kinase 1 (TBK1)/interferon regulatory transcription factor 3 (IRF3), which is a component of the innate immune system. In this report, we investigated the effects of AGEs prepared by several carbonyl compounds on STING/TBK1/IRF3 signaling. AGEs used in the present study were numbered based on the carbonyl compound type: AGE1, derived from glucose; AGE2, derived from glyceraldehyde; AGE3, derived from glycolaldehyde; AGE4, derived from methylglyoxal; and AGE5, derived from glyoxal. AGEs derived from aldehyde (AGE2 and AGE3) and dicarbonyl compounds (AGE4 and AGE5) suppressed cyclic GMP-AMP (cGAMP)-induced activation of STING/TBK1/IRF3 signaling, with different suppression efficiencies observed. Lysine modification by carbonyl compounds was related to the efficiency of the suppressive effect on STING/TBK1/IRF3 signaling. Among the AGEs used, only AGE1 enhanced cGAMP-induced activation of STING/TBK1/IRF3 signaling. Enhancing the modulation of STING/TBK1/IRF3 signaling by AGE1 was mediated by toll-like receptor 4. These results indicated that modulation of STING/TBK1/IRF3 signaling by prepared AGEs is dependent on the type and concentration of the carbonyl compound present. Modulating STING/TBK1/IRF3 signaling by AGEs may involve modification of lysine residues in proteins.


Assuntos
Lisina , Proteínas de Membrana , Fosforilação , Lisina/metabolismo , Proteínas de Membrana/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Interferons/metabolismo
9.
J Pharmacol Sci ; 151(4): 177-186, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36925216

RESUMO

Histamine is a well-known inflammatory mediator, but how histamine induces angiogenesis remains poorly understood. In the present study, we demonstrated a dose-dependent dynamic tube formation in the human endothelial cell line EA.hy926 in the presence of histamine that was completely blocked by histamine H1 receptor (H1R) and protein kinase C (PKC) inhibitors. However, histamine H2, H3, and H4 receptor inhibitors did not inhibit tube formation, suggesting that H1R-PKC signaling is involved in histamine-induced tube formation. Moreover, we found an H1-specific induction of vascular endothelial growth factor (VEGF) expression. Inhibition of VEGF receptor 2 (VEGFR2) suppressed the histamine-induced tube formation, indicating that VEGF is downstream of histamine signaling. Additionally, we demonstrated that histamine stimulation induces the expression of critical regulators of angiogenesis such as matrix metalloproteinase (MMP)-9 and MMP-14 metalloproteases, as histamine-induced tube formation is blocked by MMP inhibitors. In summary, our study indicates that histamine can activate the H1R in human endothelial cells and thereby promote tube formation through the PKC, MMP, and VEGF signaling pathways.


Assuntos
Histamina , Fator A de Crescimento do Endotélio Vascular , Humanos , Histamina/farmacologia , Histamina/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais/metabolismo , Receptores Histamínicos H1/genética , Receptores Histamínicos H1/metabolismo , Fatores de Crescimento do Endotélio Vascular
10.
Mol Biol Rep ; 50(7): 5849-5858, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37227674

RESUMO

BACKGROUND: Advanced glycation end products (AGEs) are heterogeneous proinflammatory molecules produced by a non-enzymatic glycation reaction between reducing sugars (and their metabolites) and biomolecules with amino groups, such as proteins. Although increases in and the accumulation of AGEs have been implicated in the onset and exacerbation of lifestyle- or age-related diseases, including diabetes, their physiological functions have not yet been elucidated in detail. METHODS AND RESULTS: The present study investigated the cellular responses of the macrophage cell line RAW264.7 stimulated by glycolaldehyde-derived AGEs (Glycol-AGEs) known as representative toxic AGEs. The results obtained showed that Glycol-AGEs significantly promoted the proliferation of RAW264.7 cells at a low concentration range (1-10 µg/mL) in a concentration-dependent manner. On the other hand, neither TNF-α production nor cytotoxicity were induced by the same concentrations of Glycol-AGEs. The increases observed in cell proliferation by low concentrations of Glycol-AGEs were also detected in receptor triple knockout (RAGE-TLR4-TLR2 KO) cells as well as in wild-type cells. Increases in cell proliferation were not affected by various kinase inhibitors, including MAP kinase inhibitors, but were significantly suppressed by JAK2 and STAT5 inhibitors. In addition, the expression of some cell cycle-related genes was up-regulated by the stimulation with Glycol-AGEs. CONCLUSIONS: These results suggest a novel physiological role for AGEs in the promotion of cell proliferation via the JAK-STAT pathway.


Assuntos
Produtos Finais de Glicação Avançada , Transdução de Sinais , Produtos Finais de Glicação Avançada/farmacologia , Produtos Finais de Glicação Avançada/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Proliferação de Células , Macrófagos/metabolismo
11.
J Infect Chemother ; 29(8): 749-753, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37086895

RESUMO

BACKGROUND: The standard meropenem (MEPM) regimen allowed by insurance in Japan is 0.5 g two or three times a day. Differences in dosages and administration schedules in Japan were evaluated. METHODS: Patients with bacteremia for whom MEPM was used as the initial treatment at our institution between 2016 and 2021 were included. We retrospectively investigated patients classified into two groups: those treated according to severe infections (high-dose groupand others (low-dose group). After propensity score matching, we compared the probability of achieving free drug blood levels above the minimum inhibitory concentration (MIC) in 24 h (%fT > MIC) and outcomes. RESULTS: The probability of 100% fT > MIC was significantly higher in the high-dose group (96.4% vs 74.5%, odds ratio [OR] = 0.3, 95% confidence interval [CI] = 0.2-0.4, P = < 0.001). Regarding outcomes, the 30-day mortality rate was significantly lower in the high-dose group (1.4% vs. 11.4%, OR = 8.0, 95% CI = 1.5-43.7, P = 0.019). CONCLUSIONS: To improve outcomes in patients with bacteremia treated with MEPM, support for appropriate antimicrobial use is necessary for compliance with the dosage and administration schedule according to severe infections in initial treatment.


Assuntos
Anti-Infecciosos , Bacteriemia , Humanos , Meropeném , Antibacterianos/farmacologia , Estudos Retrospectivos , Bacteriemia/tratamento farmacológico , Testes de Sensibilidade Microbiana , Tienamicinas/uso terapêutico
12.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37958627

RESUMO

Niemann-Pick disease type C (NPC) is an autosomal recessive disorder with progressive neurodegeneration. Although the causative genes were previously identified, NPC has unclear pathophysiological aspects, and patients with NPC present various symptoms and onset ages. However, various novel biomarkers and metabolic alterations have been investigated; at present, few comprehensive proteomic alterations have been reported in relation to NPC. In this study, we aimed to elucidate proteomic alterations in NPC and perform a global proteomics analysis for NPC model cells. First, we developed two NPC cell models by knocking out NPC1 using CRISPR/Cas9 (KO1 and KO2). Second, we performed a label-free (LF) global proteomics analysis. Using the LF approach, more than 300 proteins, defined as differentially expressed proteins (DEPs), changed in the KO1 and/or KO2 cells, while the two models shared 35 DEPs. As a bioinformatics analysis, the construction of a protein-protein interaction (PPI) network and an enrichment analysis showed that common characteristic pathways such as ferroptosis and mitophagy were identified in the two model cells. There are few reports of the involvement of NPC in ferroptosis, and this study presents ferroptosis as an altered pathway in NPC. On the other hand, many other pathways and DEPs were previously suggested to be associated with NPC, supporting the link between the proteome analyzed here and NPC. Therapeutic research based on these results is expected in the future.


Assuntos
Doença de Niemann-Pick Tipo C , Humanos , Doença de Niemann-Pick Tipo C/metabolismo , Proteômica/métodos , Proteoma , Hepatócitos/metabolismo
13.
Mol Biol Rep ; 49(4): 2831-2838, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35059969

RESUMO

BACKGROUND: We previously reported that advanced glycation endproducts (AGEs) increase the proinflammatory activity of high mobility group box-1 (HMGB1), a representative damage-associated molecular pattern molecule (DAMP), through their direct interaction. This suggested that AGEs activate other DAMPs and led us to search for novel DAMPs capable of interacting with AGEs. METHODS AND RESULTS: The chromatographic analysis using AGE-immobilized gel revealed the ribosomal protein family to be a factor with binding activity to AGEs. Ribosomal protein L9 (RPL9), a member of the ribosomal protein family, was found in the centrifugal supernatant of ruptured cells and in the serum of lipopolysaccharide (LPS)-stimulated sepsis model mice, exhibiting similar characteristic properties to HMGB1. Although HMGB1 potentiated LPS-stimulated TNF-α expression in macrophage-like RAW264.7 cells, RPL9 hardly exhibited this activity. Of note, RPL9 significantly suppressed the potentiated mRNA expression and protein production of TNF-α by HMGB1 plus LPS stimulation, suggesting its regulatory roles in DAMP-induced proinflammatory activity. Based on the differential scanning fluorimetric analysis, the direct interaction between RPL9 and HMGB1 may play a role in the suppressive effects of RPL9. CONCLUSIONS: This study suggested that RPL9 is a novel type of DAMP with a regulatory role in the proinflammatory response and provided insight into the pathophysiology of inflammatory diseases.


Assuntos
Alarminas , Proteínas Ribossômicas , Alarminas/metabolismo , Animais , Proteína HMGB1/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Células RAW 264.7 , Proteínas Ribossômicas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
14.
Mol Biol Rep ; 49(11): 10499-10507, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36127524

RESUMO

BACKGROUND: Methylglyoxal (MGO) is a known toxic byproduct of glycolysis, with MGO-induced cytotoxicity believed to contribute to the pathogenesis of several diseases. Glyoxalase I (GLO1) is a key enzyme for eliminating MGO in mammalian cells, therefore, compounds affecting GLO1 activity are potential therapeutic agents for MGO-induced disorders. Previously, we found nordihydroguaiaretic acid (NDGA) as a potent GLO1 inhibitor. METHODS: The inhibitory characteristics of NDGA were determined spectrophotometrically with recombinant GLO1. NDGA-induced growth-inhibition and accumulation of MGO-derived advanced glycation end products (AGEs) were examined in EA.hy926 cells. RESULTS: NDGA showed significant inhibition of GLO1 enzymatic activity in a dose-dependent manner. Its Ki value was estimated to be 146-fold lower than that of myricetin, a known GLO1 inhibitor. The co-addition of MGO with NDGA to the cells resulted in significant growth inhibition, suggesting that MGO accumulation, sufficient to affect cell growth, was caused by NDGA inhibiting GLO1. These findings were supported by the observations that the addition of aminoguanidine, a typical MGO scavenger, significantly reversed cell-growth inhibition by co-addition of MGO with NDGA, and that an increase in intracellular MGO-derived AGEs was observed during incubation with the co-addition of MGO with NDGA. CONCLUSION: NDGA was found to be a novel and potent inhibitor of GLO1. The co-addition of NDGA with MGO to the cells resulted in increased intracellular MGO accumulation followed by enhanced cell-growth inhibition.


Assuntos
Lactoilglutationa Liase , Masoprocol , Aldeído Pirúvico , Proliferação de Células , Lactoilglutationa Liase/antagonistas & inibidores , Óxido de Magnésio , Masoprocol/farmacologia , Aldeído Pirúvico/metabolismo , Humanos , Linhagem Celular
15.
Exp Cell Res ; 408(1): 112857, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34600900

RESUMO

Toxic advanced glycation end products (toxic AGEs) derived from glycolaldehyde (AGE3) have been implicated in the development of diabetic vascular complications such as retinopathy characterised by excessive angiogenesis. Different receptor types, such as receptor for AGEs (RAGE), Toll like receptor-4 and scavenger receptors, are expressed in endothelial cells and contribute to AGE-elicited alteration of cell function. In the present study, we examined the involvement of AGE-related receptors on AGE-induced angiogenesis in endothelial cells. The effects of pharmacological inhibitors or receptor neutralizing antibodies on AGE3-induced tube formation were investigated using the in vitro Matrigel tube formation assay in b.End5 cells (mouse endothelial cells). AGE3-induced signalling pathways and receptor expression changes were analysed by Western blot analysis and flow cytometry, respectively. Both FPS-ZM1, a RAGE inhibitor, and fucoidan, a ligand for scavenger receptors, suppressed AGE3-induced tube formation. Cocktails of neutralizing antibodies against the scavenger receptors CD36, CD163 and LOX-1 prevented AGE3-induced tube formation. AGE3 activated mTOR signalling, resulting in facilitation of tube formation. Activation of the AGE-RAGE pathway also led to the upregulation of scavenger receptors. Taken together, our findings suggest that the scavenger receptors CD36, CD163 and LOX-1 in conjunction with the RAGE receptor work together to mediate toxic AGE-induced facilitation of angiogenesis.


Assuntos
Células Endoteliais/efeitos dos fármacos , Produtos Finais de Glicação Avançada/farmacologia , Neovascularização Patológica/metabolismo , Receptores Depuradores/metabolismo , Animais , Células Endoteliais/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Camundongos , Neovascularização Patológica/tratamento farmacológico , Receptor para Produtos Finais de Glicação Avançada/efeitos dos fármacos , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Receptores Depuradores/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
16.
Appl Microbiol Biotechnol ; 106(12): 4539-4551, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35723691

RESUMO

Metagenomic MeBglD2 is a glycoside hydrolase family 1 (GH1) ß-glycosidase that has ß-glucosidase, ß-fucosidase, and ß-galactosidase activities, and is highly activated in the presence of monosaccharides and disaccharides. The ß-glucosidase activity of MeBglD2 increases in a cellobiose concentration-dependent manner and is not inhibited by a high concentration of D-glucose or cellobiose. Previously, we solved the crystal structure of MeBglD2 and designed a thermostable mutant; however, the mechanism of substrate recognition of MeBglD2 remains poorly understood. In this paper, we report the X-ray crystal structures of MeBglD2 complexed with various saccharides, such as D-glucose, D-xylose, cellobiose, and maltose. The results showed that subsite - 1 of MeBglD2, which contained two catalytic glutamate residues (a nucleophilic Glu356 and an acid/base Glu170) was common to other GH1 enzymes, but the positive subsites (+ 1 and + 2) had different binding modes depending on the type of sugar. Three residues (Glu183, Asn227, and Asn229), located at the positive subsites of MeBglD2, were involved in substrate specificity toward cellobiose and/or chromogenic substrates in the presence of additive sugars. The docking simulation of MeBglD2-cellobiose indicated that Asn229 and Trp329 play important roles in the recognition of + 1 D-glucose in cellobiose. Our findings provide insights into the unique substrate recognition mechanism of GH1, which can incorporate a variety of saccharides into its positive subsites. KEY POINTS: • Metagenomic glycosidase, MeBglD2, recognizes various saccharides • Structures of metagenomic MeBglD2 complexed with various saccharides are determined • MeBglD2 has a unique substrate recognition mechanism at the positive subsites.


Assuntos
Celobiose , Metagenoma , Celobiose/metabolismo , Cristalografia por Raios X , Glucose/metabolismo , Especificidade por Substrato , alfa-L-Fucosidase/metabolismo , beta-Glucosidase/metabolismo
17.
Appl Microbiol Biotechnol ; 106(2): 675-687, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34971412

RESUMO

α-Xylosidases release the α-D-xylopyranosyl side chain from di- and oligosaccharides derived from xyloglucans and are involved in xyloglucan degradation. In this study, an extracellular α-xylosidase, named AxyB, is identified and characterized in Aspergillus oryzae. AxyB belongs to the glycoside hydrolase family 31 and releases D-xylose from isoprimeverose (α-D-xylopyranosyl-(1 → 6)-D-glucopyranose) and xyloglucan oligosaccharides. In the hydrolysis of xyloglucan oligosaccharides (XLLG, Glc4Xyl3Gal2 nonasaccharide; XLXG/XXLG, Glc4Xyl3Gal1 octasaccharide; and XXXG, Glc4Xyl3 heptasaccharide), AxyB releases one molecule of the xylopyranosyl side chain attached to the non-reducing end of the ß-1,4-glucan main chain of these xyloglucan oligosaccharides to yield GLLG (Glc4Xyl2Gal2), GLXG/GXLG (Glc4Xyl2Gal1), and GXXG (Glc4Xyl2). A. oryzae has both extracellular and intracellular α-xylosidase, suggesting that xyloglucan oligosaccharides are degraded by a combination of isoprimeverose-producing oligoxyloglucan hydrolase and intracellular α-xylosidase and a combination of extracellular α-xylosidase and ß-glucosidase(s) in A. oryzae. KEY POINTS: • An extracellular α-xylosidase, AxyB, is identified in Aspergillus oryzae. • AxyB releases the xylopyranosyl side chain from xyloglucan oligosaccharides. • Different sets of glycosidases degrade xyloglucan oligosaccharides in A. oryzae.


Assuntos
Aspergillus oryzae , Xilosidases , Aspergillus oryzae/metabolismo , Glucanos , Oligossacarídeos , Especificidade por Substrato , Xilanos , Xilosidases/genética , Xilosidases/metabolismo
18.
Biosci Biotechnol Biochem ; 86(7): 855-864, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35441671

RESUMO

MeXyl31, a member of glycoside hydrolase family 31 (GH31), is the α-xylosidase isolated from a soil metagenomic library. The enzyme degrades α-xylosyl substrate such as isoprimeverose, α-d-xylopyranosyl-(1→6)-glucopyranose. The crystal structure of MeXyl31 was determined at 1.80 Å resolution. MeXyl31 forms the tetrameric state. The complexed structure with a xylose in the -1 subsite (α-xylose binding site) shows that the enzyme strictly recognizes α-xylose. Structural comparison between MeXyl31 and its homologue, Aspergillus niger α-xylosidase in GH31, gave insights into the positive subsite of MeXyl31. First, in the tetrameric enzyme, two monomers (a catalytic monomer and the adjacent monomer), are involved in substrate recognition. Second, the adjacent monomer composes a part of positive subsites in MeXyl31. Docking simulation and site-directed mutagenesis suggested that the Arg100 from the adjacent monomer is partially involved in the recognizing of a glucopyranose of isoprimeverose.


Assuntos
Glicosídeo Hidrolases , Xilosidases , Cristalografia por Raios X , Glicosídeo Hidrolases/química , Metagenoma , Solo , Especificidade por Substrato , Xilose , Xilosidases/metabolismo
19.
J Clin Pharm Ther ; 47(10): 1600-1607, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35708200

RESUMO

WHAT IS KNOWN AND OBJECTIVE: In this study, changes in patient outcomes were analysed to evaluate the effects of prospective audit and feedback (PAF), which was promoted under a new system of antimicrobial stewardship (AS), in patients with gram-negative rod (GNR)-positive blood cultures. METHODS: This study included patients with positive blood cultures treated at Kagawa University Hospital between 2019 and 2020. The effects of PAF, as promoted in 2020 and performed within a few days of treatment initiation, were examined in terms of patient prognosis and estimated cost of extra hospital stay associated with GNR infection. RESULTS AND DISCUSSION: As AS activities under the new system, proposals were made for targeted therapy based on susceptibility results and for the duration of antimicrobial therapy, escalation and dose increases, and imaging evaluation. Between 2019 and 2020, there was no difference in the rate of de-escalation in the form of switching to a narrower-spectrum intravenous antimicrobial, the rate of image inspection, but the rate of switching to oral therapy after receiving culture results increased from 19.7% to 31.3%, the rate of sensitivity-based treatment increased from 76.4% to 92.2%. Regarding patient outcomes, the 90-day mortality rate and the duration of hospital stay were similar between the groups. The rate of recurrent bloodstream infections decreased from 8.7% to 0.9%. WHAT IS NEW AND CONCLUSION: Most of the changes in the indicators related to patient outcomes analysed in this study suggest that the increased use of PAF in AS activities improved patient outcomes.


Assuntos
Anti-Infecciosos , Gestão de Antimicrobianos , Antibacterianos/uso terapêutico , Anti-Infecciosos/uso terapêutico , Gestão de Antimicrobianos/métodos , Hemocultura , Humanos , Tempo de Internação
20.
J Oral Rehabil ; 49(12): 1127-1134, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36151942

RESUMO

BACKGROUND: It has not yet been clarified how the type of the chewing task affects related muscle activity and how the suprahyoid muscles contribute to masticatory function in humans. OBJECTIVES: This study aimed to investigate the difference in the suprahyoid muscle activity between the freely and unilaterally chewing tasks and between the working and non-working sides during chewing. MATERIALS AND METHODS: Twenty healthy volunteers were instructed to chew peanuts and two different types of rice crackers in two ways: freely and unilaterally while surface electromyograms of the masseter and suprahyoid muscles were recorded. The chewing duration, number of chewing cycles and chewing rate were compared between the tasks. Furthermore, the masseter and suprahyoid muscle activities per chewing cycle were compared between the sides. RESULTS: The chewing duration was significantly longer, and the chewing rate was significantly higher during unilaterally chewing than freely chewing. The chewing duration differed significantly among the different foods; the harder the food, the longer the duration. Chewing rate and suprahyoid activity were significantly higher during soft rice cracker chewing. Masseter activity was higher on the chewing side than on the non-chewing side while there was no difference in suprahyoid activity between the sides. CONCLUSION: The current results demonstrate a difference in the masticatory efficacy between the chewing tasks and a functional role of the suprahyoid muscles during chewing, which does not differ between the chewing and non-chewing sides.


Assuntos
Músculo Masseter , Mastigação , Humanos , Mastigação/fisiologia , Músculo Masseter/fisiologia , Músculos do Pescoço/fisiologia , Eletromiografia , Alimentos , Músculos da Mastigação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA