Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Neurosurg Focus ; 45(2): E13, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30064319

RESUMO

Ischemic stroke is a leading cause of disability worldwide, with profound economic costs. Poststroke motor impairment is the most commonly encountered deficit resulting in significant disability and is the primary driver of stroke-associated healthcare expenditures. Although many patients derive some degree of benefit from physical rehabilitation, a significant proportion continue to suffer from persistent motor impairment. Noninvasive brain stimulation, vagal nerve stimulation, epidural cortical stimulation, and deep brain stimulation (DBS) have all been studied as potential modalities to improve upon the benefits derived from physical therapy alone. These neuromodulatory therapies aim primarily to augment neuroplasticity and drive functional reorganization of the surviving perilesional cortex. The authors have proposed a novel and emerging therapeutic approach based on cerebellar DBS targeted at the dentate nucleus. Their rationale is based on the extensive reciprocal connectivity between the dentate nucleus and wide swaths of cerebral cortex via the dentatothalamocortical and corticopontocerebellar tracts, as well as the known limitations to motor rehabilitation imposed by crossed cerebellar diaschisis. Preclinical studies in rodent models of ischemic stroke have shown that cerebellar DBS promotes functional recovery in a frequency-dependent manner, with the most substantial benefits of the therapy noted at 30-Hz stimulation. The improvements in motor function are paralleled by increased expression of markers of synaptic plasticity, synaptogenesis, and neurogenesis in the perilesional cortex. Given the findings of preclinical studies, a first-in-human trial, Electrical Stimulation of the Dentate Nucleus Area (EDEN) for Improvement of Upper Extremity Hemiparesis Due to Ischemic Stroke: A Safety and Feasibility Study, commenced in 2016. Although the existing preclinical evidence is promising, the results of this Phase I trial and subsequent clinical trials will be necessary to determine the future applicability of this therapy.


Assuntos
Cerebelo/cirurgia , Estimulação Encefálica Profunda , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral/terapia , Animais , Núcleos Cerebelares/cirurgia , Humanos , Recuperação de Função Fisiológica/fisiologia
2.
J Spine Surg ; 10(3): 344-353, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39399067

RESUMO

Background: Cervical laminectomy may be underutilized in the treatment of cervical spondylotic myelopathy (CSM) due to concerns regarding potential for post-operative instability and/or kyphosis. The purpose of this retrospective, observational study is to assess the short-term clinical and radiological outcomes as well as complications associated with a group of carefully selected patients who underwent laminectomy alone for CSM and compared them to a cohort of patients who underwent laminectomy with fusion. Methods: Patients with CSM were identified via review of a single surgeon's cases. All patients underwent preoperative clinical evaluation, lateral flexion-extension cervical radiographs, and documentation of neck and/or extremity pain via Nurick Scale and modified Japanese Orthopedic Association (JOA) scores. Postoperative follow-up occurred at 1, 3 and 6 months for all patients. Statistical analysis was performed via Student's t-test for parametric values and Wilcoxon (Mann-Whitney) rank sum test for ordinal scores. Multi-variable linear regression was used to correct for co-variance. Results: Forty-one patients who underwent laminectomy alone and 13 patients who underwent laminectomy with fusion were identified who met inclusion criteria. Both groups demonstrated significant improvement on Nurick and JOA scores postoperatively. Two patients in the laminectomy alone group required a subsequent one-level anterior cervical discectomy and fusion for onset of postoperative neck pain, without neurological symptoms or new deficits in the follow up period. There was no difference in rates of post-operative kyphosis between the groups. Conclusions: In appropriately selected patients without pre-operative kyphosis or abnormal motion on flexion-extension films, cervical laminectomy remains a safe and effective treatment option.

3.
J Neurosurg Pediatr ; 33(5): 405-410, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38428005

RESUMO

OBJECTIVE: Among patients with a history of prior lipomyelomeningocele repair, an association between increased lumbosacral angle (LSA) and cord retethering has been described. The authors sought to build a predictive algorithm to determine which complex tethered cord patients will develop the symptoms of spinal cord retethering after initial surgical repair with a focus on spinopelvic parameters. METHODS: An electronic medical record database was reviewed to identify patients with complex tethered cord (e.g., lipomyelomeningocele, lipomyeloschisis, myelocystocele) who underwent detethering before 12 months of age between January 1, 2008, and June 30, 2022. Descriptive statistics were used to characterize the patient population. The Caret package in R was used to develop a machine learning model that predicted symptom development by using spinopelvic parameters. RESULTS: A total of 72 patients were identified (28/72 [38.9%] were male). The most commonly observed dysraphism was lipomyelomeningocele (41/72 [56.9%]). The mean ± SD age at index MRI was 2.1 ± 2.2 months, at which time 87.5% of patients (63/72) were asymptomatic. The mean ± SD lumbar lordosis at the time of index MRI was 23.8° ± 11.1°, LSA was 36.5° ± 12.3°, sacral inclination was 30.4° ± 11.3°, and sacral slope was 23.0° ± 10.5°. Overall, 39.6% (25/63) of previously asymptomatic patients developed new symptoms during the mean ± SD follow-up period of 44.9 ± 47.2 months. In the recursive partitioning model, patients whose LSA increased at a rate ≥ 5.84°/year remained asymptomatic, whereas those with slower rates of LSA change experienced neurological decline (sensitivity 77.5%, specificity 84.9%, positive predictive value 88.9%, and negative predictive value 70.9%). CONCLUSIONS: This is the first study to build a machine learning algorithm to predict symptom development of spinal cord retethering after initial surgical repair. The authors found that, after initial surgery, patients who demonstrate a slower rate of LSA change per year may be at risk of developing neurological symptoms.


Assuntos
Algoritmos , Aprendizado de Máquina , Meningomielocele , Defeitos do Tubo Neural , Humanos , Defeitos do Tubo Neural/cirurgia , Defeitos do Tubo Neural/diagnóstico por imagem , Feminino , Masculino , Meningomielocele/cirurgia , Meningomielocele/diagnóstico por imagem , Lactente , Estudos Retrospectivos , Procedimentos Neurocirúrgicos/métodos , Imageamento por Ressonância Magnética , Valor Preditivo dos Testes
4.
World Neurosurg X ; 24: 100410, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39399350

RESUMO

Objectives: Comprehensive preoperative management involves the identification and optimization of medical comorbidities while avoiding excessive healthcare utilization. While diabetes and heart disease are major causes of morbidity that can worsen surgical outcomes, further study is needed to evaluate how well current perioperative strategies mitigate their risks. This study employs an exact matching protocol to isolate the effects of both diabetes and cardiovascular disease on spine surgery outcomes. Methods: 4680 consecutive patients undergoing single-level, posterior-only lumbar fusion were retrospectively enrolled. Univariate logistic regression was performed on comorbidity subgroups, then coarsened exact matching (CEM) was employed for patients with diabetes or cardiovascular disease. Patients were matched 1:1 on ten patient and procedural characteristics known to affect neurosurgical outcomes. Separate pairs of exact-matched cohorts were generated to isolate both cardiovascular disease (matched n = 192), and diabetes (matched n = 380). Primary outcomes were surgical complications; length of stay; discharge disposition (home vs. non-home); and 30- and 90-day Emergency Department (ED) visits, readmissions, reoperations, and mortality. Results: Cardiovascular disease and diabetes subgroups were not associated with short term outcomes after matching to control for confounders. Compared to univariate statistics, this method demonstrates that confounding control variables may drive outcomes more than these comorbidities themselves. Conclusion: Between otherwise exactly matched patients undergoing lumbar fusion, diabetes and cardiovascular disease posed no greater risk of short-term adverse outcomes. This suggests proper selection criteria for surgical candidates and effective current perioperative strategies to mitigate these common comorbidities. Further studies are warranted to assess and optimize the cost-effectiveness of preoperative management for patients with common comorbidities.

5.
Sensors (Basel) ; 13(6): 6957-80, 2013 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-23711461

RESUMO

X-ray Computed Tomography (CT) is one of the most commonly utilized anatomical imaging modalities for both research and clinical purposes. CT combines high-resolution, three-dimensional data with relatively fast acquisition to provide a solid platform for non-invasive human or specimen imaging. The primary limitation of CT is its inability to distinguish many soft tissues based on native contrast. While bone has high contrast within a CT image due to its material density from calcium phosphate, soft tissue is less dense and many are homogenous in density. This presents a challenge in distinguishing one type of soft tissue from another. A couple exceptions include the lungs as well as fat, both of which have unique densities owing to the presence of air or bulk hydrocarbons, respectively. In order to facilitate X-ray CT imaging of other structures, a range of contrast agents have been developed to selectively identify and visualize the anatomical properties of individual tissues. Most agents incorporate atoms like iodine, gold, or barium because of their ability to absorb X-rays, and thus impart contrast to a given organ system. Here we review the strategies available to visualize lung, fat, brain, kidney, liver, spleen, vasculature, gastrointestinal tract, and liver tissues of living mice using either innate contrast, or commercial injectable or ingestible agents with selective perfusion. Further, we demonstrate how each of these approaches will facilitate the non-invasive, longitudinal, in vivo imaging of pre-clinical disease models at each anatomical site.


Assuntos
Meios de Contraste , Tomografia Computadorizada por Raios X , Tecido Adiposo/diagnóstico por imagem , Administração Oral , Animais , Encéfalo/diagnóstico por imagem , Meios de Contraste/química , Trato Gastrointestinal/diagnóstico por imagem , Injeções Intravenosas , Rim/diagnóstico por imagem , Fígado/diagnóstico por imagem , Pulmão/diagnóstico por imagem
6.
Biomedicines ; 11(8)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37626699

RESUMO

Large animal models of spinal cord injury may be useful tools in facilitating the development of translational therapies for spinal cord injury (SCI). Porcine models of SCI are of particular interest due to significant anatomic and physiologic similarities to humans. The similar size and functional organization of the porcine spinal cord, for instance, may facilitate more accurate evaluation of axonal regeneration across long distances that more closely resemble the realities of clinical SCI. Furthermore, the porcine cardiovascular system closely resembles that of humans, including at the level of the spinal cord vascular supply. These anatomic and physiologic similarities to humans not only enable more representative SCI models with the ability to accurately evaluate the translational potential of novel therapies, especially biologics, they also facilitate the collection of physiologic data to assess response to therapy in a setting similar to those used in the clinical management of SCI. This review summarizes the current landscape of porcine spinal cord injury research, including the available models, outcome measures, and the strengths, limitations, and alternatives to porcine models. As the number of investigational SCI therapies grow, porcine SCI models provide an attractive platform for the evaluation of promising treatments prior to clinical translation.

7.
World Neurosurg ; 180: e84-e90, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37597658

RESUMO

OBJECTIVE: Preoperative management requires the identification and optimization of modifiable medical comorbidities, though few studies isolate comorbid status from related patient-level variables. This study evaluates Charlson Comorbidity Index (CCI)-an easily derived measure of aggregate medical comorbidity-to predict outcomes from spinal fusion surgery. Coarsened exact matching is employed to control for key patient characteristics and isolate CCI. METHODS: We retrospectively assessed 4680 consecutive patients undergoing single-level, posterior-only lumbar fusion at a single academic center. Logistic regression evaluated the univariate relationship between CCI and patient outcomes. Coarsened exact matching generated exact demographic matches between patients with high comorbid status (CCI >6) or no medical comorbidities (matched n = 524). Patients were matched 1:1 on factors associated with surgical outcomes, and outcomes were compared between matched cohorts. Primary outcomes included surgical complications, discharge status, 30- and 90-day risk of readmission, emergency department (ED) visits, reoperation, and mortality. RESULTS: Univariate regression of increasing CCI was significantly associated with non-home discharge, as well as 30- and 90-day readmission, ED visits, and mortality (all P < 0.05). Subsequent isolation of comorbidity between otherwise exact-matched cohorts found comorbid status did not affect readmissions, reoperations, or mortality; high CCI score was significantly associated with non-home discharge (OR = 2.50, P < 0.001) and 30-day (OR = 2.44, P = 0.02) and 90-day (OR = 2.29, P = 0.008) ED evaluation. CONCLUSIONS: Comorbidity, measured by CCI, did not increase the risk of readmission, reoperation, or mortality. Single-level, posterior lumbar fusions may be safe in appropriately selected patients regardless of comorbid status. Future studies should determine whether CCI can guide discharge planning and postoperative optimization.


Assuntos
Fusão Vertebral , Humanos , Estudos Retrospectivos , Tempo de Internação , Complicações Pós-Operatórias/epidemiologia , Readmissão do Paciente , Comorbidade
8.
J Radiosurg SBRT ; 8(2): 117-125, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275137

RESUMO

In Gamma Knife (GK) radiosurgery, dose rate decreases during the life cycle of its radiation source, extending treatment times. Prolonged treatments influence the amount of sublethal radiation injury that is repaired during exposure, and is associated with decreased biologically-equivalent dose (BED). We assessed the impact of treatment times on clinical outcomes following GK of the trigeminal nerve - a rare clinical model to isolate the effects of treatment times. This is a retrospective analysis of 192 patients with facial pain treated across three source exchanges. All patients were treated to 80 Gy with a single isocenter. Treatment time was analyzed in terms of patient anatomy-specific dose rate, as well as BED calculated from individual patient beam-on times. An outcome tool measuring pain in three distinct domains (pain intensity, interference with general and oro-facial activities of daily living), was administered before and after intervention. Multivariate linear regression was performed with dose rate/BED, brainstem dose, sex, age, diagnosis, and prior intervention as predictors. BED was an independent predictor of the degree of improvement in all three dimensions of pain severity. A decrease in dose rate by 1.5 Gy/min corresponded to 31.8% less improvement in the overall severity of pain. Post-radiosurgery incidence of facial numbness was increased for BEDs in the highest quartile. Treatment time is an independent predictor of pain outcomes, suggesting that prescription dose should be customized to ensure iso-effective treatments, while accounting for the possible increase in adverse effects at the highest BEDs.

10.
Neurosurgery ; 83(4): 666-674, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29048606

RESUMO

BACKGROUND: A host of influences contribute to cognitive and behavioral changes following deep brain stimulation. The location of the active cathode is likely an important variable but it has received little attention. OBJECTIVE: To determine whether active contact location relative to the subthalamic nucleus and other neighboring structures is related to nonmotor outcomes. METHODS: We identified a retrospective, cross-sectional sample of 46 patients who underwent subthalamic nucleus deep brain stimulation for treatment of idiopathic Parkinson's disease. T-tests or nonparametric equivalents were used to detect baseline differences between unilateral left, unilateral right, and bilateral surgical groups. Correlation and partial correlational analyses identified relationships between contact location variables and alterations in cognitive, mood, quality of life, motor, and disease variables. RESULTS: Medial contact locations within the left subthalamic nucleus were correlated with improvements in self-reported mood (r12 = -0.78, P = .001; 95% confidence interval [CI] = -0.43 to -0.93) but worsening semantic fluency (r26 = -0.38, P = .048; 95% CI = -0.01 to -0.66). Phonemic fluency worsened with more posterior left placement (r34 = 0.35, P = .036; 95% CI = 0.03 to 0.61). Memory outcome was related to right hemisphere stimulation voltage (r29 = -0.40, P = .022; 95% CI = -0.05 to -0.66), which is likely a proxy for variable electrode location. CONCLUSION: Location of the active contact is related to nonmotor outcomes, even in electrodes that are adequately placed. This is relevant to clinical care as there appears to be a trade-off between mood and fluency abilities that should be considered during surgical planning according to preoperative patient characteristics.


Assuntos
Estimulação Encefálica Profunda/efeitos adversos , Estimulação Encefálica Profunda/métodos , Doença de Parkinson/terapia , Núcleo Subtalâmico/fisiologia , Idoso , Estudos Transversais , Depressão/etiologia , Eletrodos Implantados , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Qualidade de Vida , Estudos Retrospectivos , Distúrbios da Fala/etiologia
11.
Neurosurgery ; 83(5): 1057-1067, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29029200

RESUMO

BACKGROUND: Chronic deep brain stimulation of the rodent lateral cerebellar nucleus (LCN) has been demonstrated to enhance motor recovery following cortical ischemia. This effect is concurrent with synaptogenesis and expression of long-term potentiation markers in the perilesional cerebral cortex. OBJECTIVE: To further investigate the cellular changes associated with chronic LCN stimulation in the ischemic rodent by examining neurogenesis along the cerebellothalamocortical pathway. METHODS: Rats were trained on the pasta matrix task, followed by induction of cortical ischemia and electrode implantation in the contralesional LCN. Electrical stimulation was initiated 6 wk after stroke induction and continued for 4 wk prior to sacrifice. Neurogenesis was examined using immunohistochemistry. RESULTS: Treated animals showed enhanced performance on the pasta matrix task relative to sham controls. Increased cell proliferation colabeled with 5'-Bromo-2'-deoxyuridine and neurogenic markers (doublecortin) was observed in the perilesional cortex as well as bilateral mediodorsal and ventrolateral thalamic subnuclei in treated vs untreated animals. The neurogenic effect at the level of motor cortex was selective, with stimulation-treated animals showing greater glutamatergic neurogenesis but significantly less GABAergic neurogenesis. CONCLUSION: These findings suggest that LCN deep brain stimulation modulates postinjury neurogenesis, providing a possible mechanistic foundation for the associated enhancement in poststroke motor recovery.


Assuntos
Isquemia Encefálica/fisiopatologia , Núcleos Cerebelares/fisiopatologia , Estimulação Encefálica Profunda/métodos , Neurogênese/fisiologia , Recuperação de Função Fisiológica/fisiologia , Animais , Modelos Animais de Doenças , Proteína Duplacortina , Potenciação de Longa Duração/fisiologia , Masculino , Ratos , Ratos Long-Evans , Roedores
12.
Brain Stimul ; 11(6): 1356-1367, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30061053

RESUMO

BACKGROUND: Many traumatic brain injury (TBI) survivors live with persistent disability from chronic motor deficits despite contemporary rehabilitation services, underscoring the need for novel treatment. OBJECTIVE/HYPOTHESIS: We have previously shown that deep brain stimulation (DBS) of the lateral cerebellar nucleus (LCN) can enhance post-stroke motor recovery and increase the expression of markers of long-term potentiation in perilesional cerebral cortex. We hypothesize that a similar beneficial effect will be for motor deficits induced by unilateral fluid percussion injury (FPI) in rodents through long-term potentiation- and anti-inflammatory based mechanisms. METHODS: Male Long Evans rats with a DBS macroelectrode in the LCN underwent FPI over contralateral primary motor cortex. After 4 weeks of spontaneous recovery, DBS treatment was applied for 4 weeks, with the pasta matrix, cylinder, and horizontal ladder tests used to evaluate motor performance. All animals were euthanized and tissue harvested for further analysis by histology, immunohistochemistry, RNA microarray assay and Western Blot. RESULTS: LCN DBS-treated animals experienced a significantly greater rate of motor recovery than untreated surgical controls, with treated animals showing enhanced expression of RNA and protein for excitability related genes, suppressed expression of pro-inflammatory genes, suppressed microglial and astrocytic activation, but proliferation of c-fos positive cells. Finally, our data suggest a possible role for anti-apoptotic effects with LCN DBS. CONCLUSION: LCN DBS enhanced the motor recovery following TBI, possibly by elevating the neuronal excitability at the perilesional area and mediating anti-apoptotic and anti-inflammatory effects.


Assuntos
Lesões Encefálicas Traumáticas/terapia , Núcleos Cerebelares/fisiologia , Estimulação Encefálica Profunda/métodos , Modelos Animais de Doenças , Córtex Motor/fisiologia , Recuperação de Função Fisiológica/fisiologia , Animais , Lesões Encefálicas Traumáticas/fisiopatologia , Inflamação/fisiopatologia , Inflamação/terapia , Potenciação de Longa Duração/fisiologia , Masculino , Desempenho Psicomotor/fisiologia , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley , Roedores
13.
JCI Insight ; 3(21)2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30385717

RESUMO

Glioblastoma (GBM) remains uniformly lethal, and despite a large accumulation of immune cells in the microenvironment, there is limited antitumor immune response. To overcome these challenges, a comprehensive understanding of GBM systemic immune response during disease progression is required. Here, we integrated multiparameter flow cytometry and mass cytometry TOF (CyTOF) analysis of patient blood to determine changes in the immune system among tumor types and over disease progression. Utilizing flow cytometry analysis in a cohort of 259 patients ranging from benign to malignant primary and metastatic brain tumors, we found that GBM patients had a significant elevation in myeloid-derived suppressor cells (MDSCs) in peripheral blood but not immunosuppressive Tregs. In GBM patient tissue, we found that increased MDSC levels in recurrent GBM portended poor prognosis. CyTOF analysis of peripheral blood from newly diagnosed GBM patients revealed that reduced MDSCs over time were accompanied by a concomitant increase in DCs. GBM patients with extended survival also had reduced MDSCs, similar to the levels of low-grade glioma (LGG) patients. Our findings provide a rationale for developing strategies to target MDSCs, which are elevated in GBM patients and predict poor prognosis.


Assuntos
Neoplasias Encefálicas/imunologia , Linhagem Celular/imunologia , Glioblastoma/imunologia , Células Supressoras Mieloides/imunologia , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/secundário , Linhagem Celular/efeitos dos fármacos , Progressão da Doença , Feminino , Citometria de Fluxo/métodos , Glioblastoma/patologia , Humanos , Estudos Longitudinais , Masculino , Células Supressoras Mieloides/efeitos dos fármacos , Metástase Neoplásica , Estadiamento de Neoplasias , Prognóstico , Análise de Sobrevida , Microambiente Tumoral/efeitos dos fármacos
14.
Front Aging Neurosci ; 9: 10, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28261086

RESUMO

Crossed cerebellar diaschisis (CCD) is a functional deficit of the cerebellar hemisphere resulting from loss of afferent input consequent to a lesion of the contralateral cerebral hemisphere. It is manifested as a reduction of metabolism and blood flow and, depending on severity and duration, it can result in atrophy, a phenomenon known as crossed cerebellar atrophy (CCA). While CCA has been well-demonstrated in humans, it remains poorly characterized in animal models of stroke. In this study we evaluated the effects of cerebral cortical ischemia on contralateral cerebellar anatomy using an established rodent model of chronic stroke. The effects of cortical ischemia on the cerebellar hemispheres, vermis and deep nuclei were characterized. Intracortical microinjections of endothelin-1 (ET-1) were delivered to the motor cortex of Long Evans rats to induce ischemic stroke, with animals sacrificed 6 weeks later. Naive animals served as controls. Cerebral sections and cerebellar sections including the deep nuclei were prepared for analysis with Nissl staining. Cortical ischemia was associated with significant thickness reduction of the molecular layer at the Crus 1 and parafloccular lobule (PFL), but not in fourth cerebellar lobule (4Cb), as compared to the ipsilesional cerebellar hemisphere. A significant reduction in volume and cell density of the lateral cerebellar nucleus (LCN), the rodent correlate of the dentate nucleus, was also noted. The results highlight the relevance of corticopontocerebellar (CPC) projections for cerebellar metabolism and function, including its direct projections to the LCN.

15.
Contrast Media Mol Imaging ; 10(3): 188-93, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25169942

RESUMO

Gold nanomaterials (AuNPs) represent a promising new class of contrast agents for X-ray computed tomographic (CT) imaging in both research and clinical settings. These materials exhibit superior X-ray absorption properties compared with other iodinated agents, and thus require lower injection doses. Gold is nonimmunogenic and therefore contributes to safety profile in living specimens. Unfortunately, most reports on the use of AuNPs as X-ray CT enhancers only demonstrate marginal enhancement of the intended anatomical structure. In this study, we demonstrate the dramatic properties of gold nanorods (GNR) to serve as robust X-ray CT contrast-enhancing agent for selective imaging of the spleen. These organ-specific uptake properties were delineated by performing longitudinal CT imaging of living mice that were dosed with GNR at 2 day intervals. Rapid uptake in spleen was noted within 12 h of first systemic administration with a change in contrast enhancement of 90 Hounsfield units (ΔHU = 90) and with two subsequent injections a total contrast enhancement of over 200 HU was observed. The resulting images provide excellent contrast that will enable the detailed anatomical visualization and study of a range of pre-clinical models of spleen disease including infection and cancer.


Assuntos
Meios de Contraste/química , Ouro/química , Nanotubos/química , Baço/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Animais , Cetrimônio , Compostos de Cetrimônio/química , Fígado/diagnóstico por imagem , Masculino , Camundongos , Microscopia Eletrônica de Transmissão
16.
J Vis Exp ; (73): e50250, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-23542702

RESUMO

Three-dimensional printing allows for the production of highly detailed objects through a process known as additive manufacturing. Traditional, mold-injection methods to create models or parts have several limitations, the most important of which is a difficulty in making highly complex products in a timely, cost-effective manner.(1) However, gradual improvements in three-dimensional printing technology have resulted in both high-end and economy instruments that are now available for the facile production of customized models.(2) These printers have the ability to extrude high-resolution objects with enough detail to accurately represent in vivo images generated from a preclinical X-ray CT scanner. With proper data collection, surface rendering, and stereolithographic editing, it is now possible and inexpensive to rapidly produce detailed skeletal and soft tissue structures from X-ray CT data. Even in the early stages of development, the anatomical models produced by three-dimensional printing appeal to both educators and researchers who can utilize the technology to improve visualization proficiency. (3, 4) The real benefits of this method result from the tangible experience a researcher can have with data that cannot be adequately conveyed through a computer screen. The translation of pre-clinical 3D data to a physical object that is an exact copy of the test subject is a powerful tool for visualization and communication, especially for relating imaging research to students, or those in other fields. Here, we provide a detailed method for printing plastic models of bone and organ structures derived from X-ray CT scans utilizing an Albira X-ray CT system in conjunction with PMOD, ImageJ, Meshlab, Netfabb, and ReplicatorG software packages.


Assuntos
Imageamento Tridimensional/métodos , Modelos Anatômicos , Impressão/métodos , Tomografia Computadorizada por Raios X/métodos , Animais , Osso e Ossos/anatomia & histologia , Imageamento Tridimensional/instrumentação , Masculino , Impressão/instrumentação , Coelhos , Ratos Wistar , Esqueleto , Crânio/anatomia & histologia , Software , Tomografia Computadorizada por Raios X/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA