Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 22(22): 26814-24, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25401828

RESUMO

Enhancements of the continuous-wave four-wave mixing conversion efficiency and bandwidth are accomplished through the application of plasma-assisted photoresist reflow to reduce the sidewall roughness of sub-square-micron-modal area waveguides. Nonlinear AlGaAs optical waveguides with a propagation loss of 0.56 dB/cm demonstrate continuous-wave four-wave mixing conversion efficiency of -7.8 dB. Narrow waveguides that are fabricated with engineered processing produce waveguides with uncoated sidewalls and anti-reflection coatings that show group velocity dispersion of +0.22 ps²/m. Waveguides that are 5-mm long demonstrate broadband four-wave mixing conversion efficiencies with a half-width 3-dB bandwidth of 63.8-nm.

2.
Opt Express ; 22(19): 22730-42, 2014 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-25321742

RESUMO

We use pump-probe spectroscopy and continuous wave cross-phase and cross-amplitude modulation measurements to study the optical nonlinearity of a hydrogenated amorphous silicon (a-Si:H) nanowire waveguide, and we compare the results to those of a crystalline silicon waveguide of similar dimensions. The a-Si:H nanowire shows essentially zero instantaneous two-photon absorption, but it displays a strong, long-lived non-instantaneous nonlinearity that is both absorptive and refractive. Power scaling measurements show that this non-instantaneous nonlinearity in a-Si:H scales as a third-order nonlinearity, and the refractive component possesses the opposite sign to that expected for free-carrier dispersion.


Assuntos
Luz , Nanofios , Refratometria/instrumentação , Espalhamento de Radiação , Silício/química , Desenho de Equipamento , Dinâmica não Linear
3.
Opt Lett ; 39(11): 3161-4, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24876002

RESUMO

We present a side-by-side comparison of the nonlinear behavior of four passive AlGaAs ridge waveguides where the bandgap energy of the core layers ranges from 1.60 to 1.79 eV. By engineering the bandgap to suppress two-photon absorption, minimizing the linear loss, and minimizing the mode area, we achieve efficient wavelength conversion in the C-band via partially degenerate four-wave mixing with a continuous-wave pump. The observed conversion efficiency [Idler(OUT)/Signal(IN)=-6.8 dB] is among the highest reported in passive semiconductor or glass waveguides.

4.
Opt Lett ; 37(22): 4693-5, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23164882

RESUMO

We describe a technique for accurately measuring the ratio between the imaginary and real parts of the third-order nonlinearity in optical waveguides. Unlike most other methods, it does not depend on precise knowledge of the coupling efficiencies, optical propagation loss, or optical pulse shape. We apply the method to characterize a silicon waveguide, a GaAs waveguide, and AlGaAs waveguides with different alloy concentrations.

5.
Opt Lett ; 28(18): 1689-91, 2003 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-13677538

RESUMO

An experimental investigation of the transmission of multimode capillary waveguides with a nonlinear absorber in the core shows an enhanced nonlinear absorption relative to the same length of bulk material. The results are consistent with partial mode filling within the cores of the waveguides. This study confirms the promising optical limiting capabilities of multimode nonlinear waveguides and implies that the mode structure should be considered in the design and evaluation of capillary array optical limiters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA