RESUMO
The Cu-catalyzed azide-alkyne cycloaddition (CuAAC) reaction is used as a ligation tool throughout chemical and biological sciences. Despite the pervasiveness of CuAAC, there is a need to develop more efficient methods to form 1,4-triazole ligated products with low loadings of Cu. In this paper, we disclose a mechanistic model for the ynamine-azide (3 + 2) cycloadditions catalyzed by copper(II) acetate. Using multinuclear nuclear magnetic resonance spectroscopy, electron paramagnetic resonance spectroscopy, and high-performance liquid chromatography analyses, a dual catalytic cycle is identified. First, the formation of a diyne species via Glaser-Hay coupling of a terminal ynamine forms a Cu(I) species competent to catalyze an ynamine-azide (3 + 2) cycloaddition. Second, the benzimidazole unit of the ynamine structure has multiple roles: assisting C-H activation, Cu coordination, and the formation of a postreaction resting state Cu complex after completion of the (3 + 2) cycloaddition. Finally, reactivation of the Cu resting state complex is shown by the addition of isotopically labeled ynamine and azide substrates to form a labeled 1,4-triazole product. This work provides a mechanistic basis for the use of mixed valency binuclear catalytic Cu species in conjunction with Cu-coordinating alkynes to afford superior reactivity in CuAAC reactions. Additionally, these data show how the CuAAC reaction kinetics can be modulated by changes to the alkyne substrate, which then has a predictable effect on the reaction mechanism.
RESUMO
The Cu-catalyzed azide-alkyne cycloaddition (CuAAC) reaction is a key ligation tool used to prepare bioconjugates. Despite the widespread utility of CuAAC to produce discrete 1,4-triazole products, the requirement of a Cu catalyst can result in oxidative damage to these products. Ynamines are superior reactive groups in CuAAC reactions and require lower Cu loadings to produce 1,4-triazole products. This study discloses a strategy to identify optimal reaction conditions for the formation of oligodeoxyribonucleotide (ODN) bioconjugates. First, the surveying of reaction conditions identified that the ratio of Cu to the choice of reductant (i.e., either sodium ascorbate or glutathione) influences the reaction kinetics and the rate of degradation of bioconjugate products. Second, optimized conditions were used to prepare a variety of ODN-tagged products and ODN-protein conjugates and compared to conventional CuAAC and Cu-free azide-alkyne (3 + 2)cycloadditions (SPAAC), with ynamine-based examples being faster in all cases. The reaction optimization platform established in this study provides the basis for its wider utility to prepare CuAAC-based bioconjugates with lower Cu loadings while maintaining fast reaction kinetics.
RESUMO
We report an approach to the diastereoselective synthesis of 1,2-disubstituted heterocyclic aziridines. A Brønsted acid-catalyzed conjugate addition of anilines to trisubstituted heterocyclic chloroalkenes provides an intermediate 1,2-chloroamine. Diastereocontrol was found to vary significantly with solvent selection, with computational modelling confirming selective, spontaneous fragmentation in the presence of trace acids, proceeding through a pseudo-cyclic, protonated intermediate and transition state. These chloroamines can then be converted to the aziridine by treatment with LiHMDS with high stereochemical fidelity. This solvent-induced stereochemical enrichment thereby enables an efficient route to rare cis-aziridines with high dr. The scope, limitations, and mechanistic origins of selectivity are also presented.
RESUMO
We report the development of a C(sp3 )-C(sp2 ) coupling reaction using styrene boronic acids and redox-active esters under photoredox catalysis. The reaction proceeds through an unusual polarity-mismatched radical addition mechanism that is orthogonal to established processes. Synergistic activation of the radical precursor and organoboron are critical mechanistic events. Activation of an N-hydroxyphthalimide (NHPI) ester by coordination to boron enables electron transfer, with decomposition leading to a nucleofuge rebound, activating the organoboron to radical addition. The unique mechanism enables chemoselective coupling of styrene boronic acids in the presence of other alkene radical acceptors. The scope and limitations of the reaction, and a detailed mechanistic investigation are presented.
RESUMO
Traditional approaches to bio-orthogonal reaction discovery have focused on developing reagent pairs that react with each other faster than they are metabolically degraded. Glutathione (GSH) is typically responsible for the deactivation of most bio-orthogonal reagents. Here we demonstrate that GSH promotes a Cu-catalysed (3+2) cycloaddition reaction between an ynamine and an azide. We show that GSH acts as a redox modulator to control the Cu oxidation state in these cycloadditions. Rate enhancement of this reaction is specific for ynamine substrates and is tuneable by the Cu:GSH ratio. This unique GSH-mediated reactivity gradient is then utilised in the dual sequential bio-orthogonal labelling of peptides and oligonucleotides via two distinct chemoselective (3+2) cycloadditions.
Assuntos
Glutationa , Peptídeos , Peptídeos/química , Azidas/química , Catálise , Reação de CicloadiçãoRESUMO
We report a method for the synthesis of chiral vicinal chloroamines via asymmetric protonation of catalytically generated prochiral chloroenamines using chiral Brønsted acids. The process is highly enantioselective, with the origin of asymmetry and catalyst substituent effects elucidated by DFT calculations. We show the utility of the method as an approach to the synthesis of a broad range of heterocycle-substituted aziridines by treatment of the chloroamines with base in a one-pot process, as well as the utility of the process to allow access to vicinal diamines.
Assuntos
Aziridinas , Catálise , Cloraminas , Ciclização , EstereoisomerismoRESUMO
A concise strategy for the total synthesis of several Aspidosperma alkaloids is reported. A Suzuki-Miyaura cross-coupling provides access to a 2-vinyl indole that undergoes a Diels-Alder cascade reaction with butyn-2-one to deliver a pyrroloindoline intermediate. This undergoes cascade amidation, reduction, skeletal rearrangement, and intramolecular Michael addition to provide a common intermediate containing the full framework of the Aspidosperma alkaloids. The utility of this intermediate is shown in the synthesis of four different natural products.
Assuntos
Alcaloides , Aspidosperma , Alcaloides Indólicos , EstereoisomerismoRESUMO
Reducing the required frequence of drug dosing can improve the adherence of patients to chronic treatments. Hence, drugs with longer in vivo half-lives are highly desirable. One of the most promising approaches to extend the in vivo half-life of drugs is conjugation to human serum albumin (HSA). In this work, we describe the use of AlbuBinder 1, a small-molecule noncovalent HSA binder, to extend the in vivo half-life and pharmacology of small-molecule BMP1/TLL inhibitors in humanized mice (HSA KI/KI). A series of conjugates of AlbuBinder 1 with BMP1/TLL inhibitors were prepared. In particular, conjugate c showed good solubility and a half-life extension of >20-fold versus the parent molecule in the HSA KI/KI mice, reaching half-lives of >48 h with maintained maximal inhibition of plasma BMP1/TLL. The same conjugate showed a half-life of only 3 h in the wild-type mice, suggesting that the half-life extension was principally due to specific interactions with HSA. It is envisioned that conjugation to AlbuBinder 1 should be applicable to a wide range of small molecule or peptide drugs with short half-lives. In this context, AlbuBinders represent a viable alternative to existing half-life extension technologies.
Assuntos
Metaloproteases/metabolismo , Inibidores de Proteases/farmacologia , Albumina Sérica Humana/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Animais , Proteína Morfogenética Óssea 1/metabolismo , Meia-Vida , Humanos , Camundongos , Estudo de Prova de Conceito , Inibidores de Proteases/farmacocinéticaRESUMO
Transition metal-mediated formation of C-N bonds is an essential synthetic methodology. The discovery of the Chan-Lam amination provided a C-N bond forming process that was mild, convenient, and inexpensive, offering an alternative to complementary methods using other transition metals (TMs). Over the past 20 years, this reaction has seen considerable development in its scope of application, uptake into industry, and understanding of its mechanism. This review provides an account of the development of the Chan-Lam amination, highlighting progress and notable examples of application since 2011. Focus is given to evolution in mechanistic understanding and selected applications of the methodology within medicinal and process chemistry.
RESUMO
Metal-catalyzed C-N cross-coupling generally forms C-N bonds by reductive elimination from metal complexes bearing covalent C- and N-ligands. We have identified a Cu-mediated C-N cross-coupling that uses a dative N-ligand in the bond-forming event, which, in contrast to conventional methods, generates reactive cationic products. Mechanistic studies suggest the process operates via transmetalation of an aryl organoboron to a CuII complex bearing neutral N-ligands, such as nitriles or N-heterocycles. Subsequent generation of a putative CuIII complex enables the oxidative C-N coupling to take place, delivering nitrilium intermediates and pyridinium products. The reaction is general for a range of N(sp) and N(sp2 ) precursors and can be applied to drug synthesis and late-stage N-arylation, and the limitations in the methodology are mechanistically evidenced.
RESUMO
A catalytic enantioselective synthesis of heterocyclic vicinal fluoroamines is reported. A chiral Brønsted acid promotes aza-Michael addition to fluoroalkenyl heterocycles to give a prochiral enamine intermediate that undergoes asymmetric protonation upon rearomatization. The reaction accommodates a range of azaheterocycles and nucleophiles, generating the C-F stereocentre in high enantioselectivity, and is also amenable to stereogenic C-CF3 bonds. Extensive DFT calculations provided evidence for stereocontrolled proton transfer from catalyst to substrate as the rate-determining step, and showed the importance of steric interactions from the catalyst's alkyl groups in enforcing the high enantioselectivity. Crystal structure data show the dominance of noncovalent interactions in the core structure conformation, enabling modulation of the conformational landscape. Ramachandran-type analysis of conformer distribution and Protein Data Bank mining indicated that benzylic fluorination by this approach has the potential to improve the potency of several marketed drugs.
RESUMO
Deoxyfluorination is a primary method for the formation of C-F bonds. Bespoke reagents are commonly used because of issues associated with the low reactivity of metal fluorides. Reported here is the development of a simple strategy for deoxyfluorination, using first-row transition-metal fluorides, and it overcomes these limitations. Using CuF2 as an exemplar, activation of an O-alkylisourea adduct, formed in situ, allows effective nucleophilic fluoride transfer to a range of primary and secondary alcohols. Spectroscopic investigations have been used to probe the origin of the enhanced reactivity of CuF2 . The utility of the process in enabling 18 F-radiolabeling is also presented.
RESUMO
The Suzuki-Miyaura reaction is a cornerstone method for sp2-sp2 cross-coupling in industry. There has been a concerted effort to enable the use of Ni catalysis as an alternative to Pd in order to mitigate cost and improve sustainability. Despite significant advances, ligand development for Ni-catalyzed Suzuki-Miyaura cross-coupling remains underdeveloped when compared to Pd and, as a consequence, ligands for Ni-catalyzed processes are typically taken from the Pd arena. In this study we evaluate the effect of using a similar Ni and Pd precatalyst based on a common bidentate ligand (dppf) in a head-to-head format for the most common type of biaryl couplings, establishing the practical implications of direct replacement of Pd with Ni, and identifying the potential origins of these observations in a mechanistic context.
RESUMO
Ligand metathesis of Pd(II) complexes is mechanistically essential for cross-coupling. We present a study of halideâOH anion metathesis of (Ar)PdII complexes using vinylBPin as a bifunctional chemical probe with Pd(II)-dependent cross-coupling pathways. We identify the variables that profoundly impact this event and allow control to be leveraged. This then allows control of cross-coupling pathways via promotion or inhibition of organoboron transmetalation, leading to either Suzuki-Miyaura or Mizoroki-Heck products. We show how this transmetalation switch can be used to synthetic gain in a cascade cross-coupling/Diels-Alder reaction, delivering borylated or non-borylated carbocycles, including steroid-like scaffolds.
RESUMO
Amide bonds are one of the underpinning linkages in all living systems and are fundamental within drug discovery. Current methods towards their synthesis frequently rely on the use of dipolar aprotic solvents; however, due to increasingly stringent regulations and growing societal pressures, safe and more sustainable alternatives are highly sought after. Herein, we evaluate the application of the bio-based solvent Cyrene™ in the HATU mediated synthesis of amides and peptides. We found that Cyrene functioned as a competent replacement for DMF in the synthesis of a series of lead-like compounds and dipeptides (25 examples, 63-100%).
RESUMO
N-Functionalized amino acids are important building blocks for the preparation of diverse bioactive molecules, including peptides. The development of sustainable manufacturing routes to chiral N-alkylated amino acids remains a significant challenge in the pharmaceutical and fine-chemical industries. Herein we report the discovery of a structurally diverse panel of biocatalysts which catalyze the asymmetric synthesis of N-alkyl amino acids through the reductive coupling of ketones and amines. Reactions have been performed on a gram scale to yield optically pure N-alkyl-functionalized products in high yields.
Assuntos
Aminoácidos/química , Biocatálise , Alquilação , Aminoácidos/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Humanos , Cetonas/química , Pseudomonas/enzimologia , EstereoisomerismoRESUMO
Designing strategies to access stereodefined olefinic organoboron species is an important synthetic challenge. Despite significant advances, there is a striking paucity of routes to Z-α-substituted styrenyl organoborons. Herein, this strategic imbalance is redressed by exploiting the polarity of the C(sp2 )-B bond to activate the neighboring πâ system, thus enabling a mild, traceless photocatalytic isomerization of readily accessible E-α-substituted styrenyl BPins to generate the corresponding Z-isomers with high fidelity. Preliminary validation of this contra-thermodynamic EâZ isomerization is demonstrated in a series of stereoretentive transformations to generate Z-configured trisubstituted alkenes, as well as in a concise synthesis of the anti-tumor agent Combretastatinâ A4.
RESUMO
The direct enantioselective synthesis of chiral azaheteroaryl ethylamines from vinyl-substituted N-heterocycles and anilines is reported. A chiral phosphoric acid (CPA) catalyst promotes dearomatizing aza-Michael addition to give a prochiral exocyclic aryl enamine, which undergoes asymmetric protonation upon rearomatization. The reaction accommodates a broad range of N-heterocycles, nucleophiles, and substituents on the prochiral centre, generating the products in high enantioselectivity. DFT studies support a facile nucleophilic addition based on catalyst-induced LUMO lowering, with site-selective, rate-limiting, intramolecular asymmetric proton transfer from the ion-paired prochiral intermediate.
RESUMO
We report an investigation of the Chan-Lam amination reaction. A combination of spectroscopy, computational modeling, and crystallography has identified the structures of key intermediates and allowed a complete mechanistic description to be presented, including off-cycle inhibitory processes, the source of amine and organoboron reactivity issues, and the origin of competing oxidation/protodeboronation side reactions. Identification of key mechanistic events has allowed the development of a simple solution to these issues: manipulating Cu(I) â Cu(II) oxidation and exploiting three synergistic roles of boric acid has allowed the development of a general catalytic Chan-Lam amination, overcoming long-standing and unsolved amine and organoboron limitations of this valuable transformation.
RESUMO
A method for conditional control of orthogonal sequential Cu-catalyzed azide-alkyne cycloaddition (CuAAC) reactions is reported. The inherent reactivity of an aromatic ynamine is controlled by a silyl protecting group that allows the selective CuAAC reaction of less reactive alkynes. Alternatively, the same protected ynamine undergoes selective CuAAC reaction via silyl deprotection in situ to give the ynamine click products. This allows complete orthogonal control of dialkyne systems and provides a unifying strategy for chemoselective CuAAC ligations in multialkyne/azide systems.