Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci ; 29(45): 14271-86, 2009 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-19906975

RESUMO

M(1) muscarinic acetylcholine receptors (mAChRs) may represent a viable target for treatment of disorders involving impaired cognitive function. However, a major limitation to testing this hypothesis has been a lack of highly selective ligands for individual mAChR subtypes. We now report the rigorous molecular characterization of a novel compound, benzylquinolone carboxylic acid (BQCA), which acts as a potent, highly selective positive allosteric modulator (PAM) of the rat M(1) receptor. This compound does not directly activate the receptor, but acts at an allosteric site to increase functional responses to orthosteric agonists. Radioligand binding studies revealed that BQCA increases M(1) receptor affinity for acetylcholine. We found that activation of the M(1) receptor by BQCA induces a robust inward current and increases spontaneous EPSCs in medial prefrontal cortex (mPFC) pyramidal cells, effects which are absent in acute slices from M(1) receptor knock-out mice. Furthermore, to determine the effect of BQCA on intact and functioning brain circuits, multiple single-unit recordings were obtained from the mPFC of rats that showed BQCA increases firing of mPFC pyramidal cells in vivo. BQCA also restored discrimination reversal learning in a transgenic mouse model of Alzheimer's disease and was found to regulate non-amyloidogenic APP processing in vitro, suggesting that M(1) receptor PAMs have the potential to provide both symptomatic and disease modifying effects in Alzheimer's disease patients. Together, these studies provide compelling evidence that M(1) receptor activation induces a dramatic excitation of PFC neurons and suggest that selectively activating the M(1) mAChR subtype may ameliorate impairments in cognitive function.


Assuntos
Ácidos Carboxílicos/farmacologia , Colinérgicos/farmacologia , Deficiências da Aprendizagem/tratamento farmacológico , Neurônios/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Quinolonas/farmacologia , Reversão de Aprendizagem/efeitos dos fármacos , Animais , Células CHO , Cricetinae , Cricetulus , Feminino , Humanos , Técnicas In Vitro , Deficiências da Aprendizagem/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/fisiopatologia , Ratos , Ratos Sprague-Dawley , Receptor Muscarínico M1/metabolismo , Reversão de Aprendizagem/fisiologia
2.
J Mol Neurosci ; 19(1-2): 129-33, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12212770

RESUMO

Alzheimer's disease (AD) is the most common form of dementia in the elderly. Without a treatment that significantly delays the progression of the disease over 14 million Americans are likely to be affected with AD by the middle of the 21st Century, presenting an enormous economic and social burden. Evidence gathered over the last two decades has implicated the abnormal accumulation of A beta, in particular the longer more amyloidogenic form A beta42, as a potential causative agent in the disease. To screen for compounds that reduce A beta accumulation we have established several high throughput, cell based screens capable of the sensitive and selective detection of A beta40 and A beta42. Using these screens we have analyzed a proprietary library of natural product extracts for their ability to influence A beta accumulation. Using this approach, we have identified several agents capable of influencing total A beta concentration. In addition, we have identified one extract that selectively reduces A beta42. Intracerebroventricular administration of this agent to mice results in a selective reduction in A beta42 in the brain.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Fármacos Neuroprotetores/farmacologia , Peptídeos beta-Amiloides/efeitos dos fármacos , Animais , Western Blotting , Sobrevivência Celular , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Ensaio de Imunoadsorção Enzimática , Humanos , Camundongos , Fragmentos de Peptídeos/metabolismo
3.
Neurobiol Aging ; 28(4): 619-26, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16600436

RESUMO

The present study examined muscarinic receptor/G-protein coupling in the hippocampus and the prefrontal cortex of young and aged Long-Evans rats characterized for spatial learning ability in the Morris water maze. In a highly sensitive time-resolved fluorometry GTP-Eu binding assay, muscarinic-mediated GTP-Eu binding was severely blunted in hippocampus (-32%) and prefrontal cortex (-34%) as a consequence of aging. Furthermore, the magnitude of decreased muscarinic-mediated GTP-Eu binding was significantly correlated with the severity of spatial learning impairment in hippocampus and prefrontal cortex of aged rats and was specifically decreased in the subset of aged rats that were spatial learning impaired when compared to the aged unimpaired and the young rats. Western blot data indicated a preservation of the membrane-bound M1 receptor and the Galphaq/11 protein in both brain regions. These data demonstrate that muscarinic signaling is severely impaired as a consequence of normal aging in a manner that is closely associated with age-related cognitive decline.


Assuntos
Envelhecimento/fisiologia , Guanosina Trifosfato/metabolismo , Hipocampo/metabolismo , Transtornos da Memória , Córtex Pré-Frontal/metabolismo , Receptores Muscarínicos/fisiologia , Percepção Espacial/fisiologia , Fatores Etários , Análise de Variância , Animais , Comportamento Animal , Membrana Celular/metabolismo , Relação Dose-Resposta a Droga , Hipocampo/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/metabolismo , Transtornos da Memória/patologia , Transtornos da Memória/fisiopatologia , Agonistas Muscarínicos/farmacologia , Oxotremorina/análogos & derivados , Oxotremorina/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Ratos , Ratos Long-Evans
4.
J Biol Chem ; 278(4): 2081-4, 2003 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-12464614

RESUMO

The abnormal accumulation of beta-amyloid (Abeta) in the brain is an early and invariant feature in Alzheimer's disease (AD) and is believed to play a pivotal role in the etiology and pathogenesis of the disease. As such, a major focus of AD research has been the elucidation of the mechanisms responsible for the generation of Abeta. As with any peptide, however, the degree of Abeta accumulation is dependent not only on its production but also on its removal. In cell-based and in vitro models we have previously characterized endothelin-converting enzyme-1 (ECE-1) as an Abeta-degrading enzyme that appears to act intracellularly, thus limiting the amount of Abeta available for secretion. To determine the physiological significance of this activity, we analyzed Abeta levels in the brains of mice deficient for ECE-1 and a closely related enzyme, ECE-2. Significant increases in the levels of both Abeta40 and Abeta42 were found in the brains of these animals when compared with age-matched littermate controls. The increase in Abeta levels in the ECE-deficient mice provides the first direct evidence for a physiological role for both ECE-1 and ECE-2 in limiting Abeta accumulation in the brain and also provides further insight into the factors involved in Abeta clearance in vivo.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/biossíntese , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/fisiologia , Precursor de Proteína beta-Amiloide/biossíntese , Animais , Western Blotting , Enzimas Conversoras de Endotelina , Ensaio de Imunoadsorção Enzimática , Metaloendopeptidases , Camundongos , Camundongos Knockout , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA