Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Genomics ; 115(5): 110666, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37315874

RESUMO

Although high-throughput, cancer cell-line screening is a time-honored, important tool for anti-cancer drug development, this process involves the testing of each, individual drug in each, individual cell-line. Despite the availability of robotic liquid handling systems, this process remains a time-consuming and costly investment. The Broad Institute developed a new method called Profiling Relative Inhibition Simultaneously in Mixtures (PRISM) to screen a mixture of barcoded, tumor cell-lines. Although this methodology significantly improved the efficiency of screening large numbers of cell-lines, the barcoding process itself was tedious that requires gene transfection and subsequent selection of stable cell-lines. In this study, we developed a new, genomic approach for screening multiple cancer cell-lines using endogenous "tags" that did not require prior barcoding: single nucleotide polymorphism-based, mixed-cell screening (SMICS). The code for SMICS is available at https://github.com/MarkeyBBSRF/SMICS.


Assuntos
Antineoplásicos , Polimorfismo de Nucleotídeo Único , Linhagem Celular Tumoral , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos
2.
Chem Soc Rev ; 49(8): 2426-2480, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32140691

RESUMO

The emergence of new fungal pathogens makes the development of new antifungal drugs a medical imperative that in recent years motivates the talents of numerous investigators across the world. Understanding not only the structural families of these drugs but also their biological targets provides a rational means for evaluating the merits and selectivity of new agents for fungal pathogens and normal cells. An equally important aspect of modern antifungal drug development takes a balanced look at the problems of drug potency and drug resistance. The future development of new antifungal agents will rest with those who employ synthetic and semisynthetic methodology as well as natural product isolation to tackle these problems and with those who possess a clear understanding of fungal cell architecture and drug resistance mechanisms. This review endeavors to provide an introduction to a growing and increasingly important literature, including coverage of the new developments in medicinal chemistry since 2015, and also endeavors to spark the curiosity of investigators who might enter this fascinatingly complex fungal landscape.


Assuntos
Antifúngicos/química , Antifúngicos/farmacologia , Química Farmacêutica/métodos , Humanos
3.
Prostate ; 2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-29938815

RESUMO

BACKGROUND: Progression of castration-recurrent/resistant prostate cancer (CRPC) relies in part on dihydrotestosterone derived from intratumoral androgen metabolism. Mathematical modeling provides a valuable tool for studies of androgen metabolism in CRPC. This modeling approach integrates existing knowledge about complex biologic systems and provides a means of interrogating the effects of various interventions. We sought to model a single reaction in the androgen biosynthesis network, namely the oxidation of androsterone (AND) to androstanedione (5α-dione) by four 3α-oxidoreductase enzymes, as an initial effort to establish the feasibility of our modeling approach. METHODS: Models were constructed for two cell culture systems, a non-prostate cancer cell line (CV-1) and a prostate cancer cell line (LAPC-4), using the SimBiology app (version 5.3) in MATLAB (version 8.6). The models included components for substrate (AND), product (5α-dione), each of the four enzymes, and each of the four enzyme-substrate complexes. Each enzymatic reaction consisted of a reversible enzyme-substrate binding step and an irreversible catalysis step. Rates of change for each component were described using ordinary differential equations. RESULTS: Mathematical models were developed with model parameter values derived from literature sources or from existing experimental data, which included gene expression measurements and substrate and product concentrations determined using liquid chromatography-tandem mass spectrometry. The models for both cell lines adequately described substrate and product concentrations observed after 12 h treatment with AND. CONCLUSIONS: This modeling approach represents an adaptable, extensible and mechanistic framework that reflects androgen metabolism. The models can be expanded systematically to describe the complex androgen metabolic pathways important for study of novel therapies for CRPC.

4.
Chem Zvesti ; 72(10): 2443-2456, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36238867

RESUMO

An efficient method for regioselective synthesis of C-7 Mannich bases of 6-hydroxyaurones was accomplished by the N,N-dialkylaminomethylation using aminals prepared from dimethylamine, dipropylamine, bis(2-methoxyethyl)amine, N-methylbutylamine, N-methylbenzylamine, morpholine, piperidine, and 1-methylpiperazine. Further transformation of 7-(N,N-dialkylamino)methyl group in these aurones led to formation of C-7 acetoxymethyl and methoxymethyl derivatives of 6-hydroxyaurones, some of which showed promising inhibition of PC-3 prostate cancer cell proliferation in the high nanomolar to low micromolar range that exceeded that of cisplatin.

5.
Org Biomol Chem ; 15(36): 7623-7629, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28868548

RESUMO

Cytisine-linked isoflavonoids (CLIFs) inhibited PC-3 prostate and LS174T colon cancer cell proliferation by inhibiting a peroxisomal bifunctional enzyme. A pull-down assay using a biologically active, biotin-modified CLIF identified the target of these agents as the bifunctional peroxisomal enzyme, hydroxysteroid 17ß-dehydrogenase-4 (HSD17B4). Additional studies with truncated versions of HSD17B4 established that CLIFs specifically bind the C-terminus of HSD17B4 and selectively inhibited the enoyl CoA hydratase but not the d-3-hydroxyacyl CoA dehydrogenase activity. HSD17B4 was overexpressed in prostate and colon cancer tissues, knocking down HSD17B4 inhibited cancer cell proliferation, suggesting that HSD17B4 is a potential biomarker and drug target and that CLIFs are potential probes or therapeutic agents for these cancers.


Assuntos
Alcaloides/farmacologia , Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Isoflavonas/farmacologia , Proteína Multifuncional do Peroxissomo-2/antagonistas & inibidores , Alcaloides/química , Antineoplásicos/síntese química , Antineoplásicos/química , Azocinas/química , Azocinas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Isoflavonas/síntese química , Isoflavonas/química , Estrutura Molecular , Proteína Multifuncional do Peroxissomo-2/metabolismo , Quinolizinas/química , Quinolizinas/farmacologia , Relação Estrutura-Atividade
6.
Bioorg Med Chem ; 25(1): 58-66, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27769670

RESUMO

The emergence of multidrug-resistant bacterial and fungal strains poses a threat to human health that requires the design and synthesis of new classes of antimicrobial agents. We evaluated bis(N-amidinohydrazones) and N-(amidino)-N'-aryl-bishydrazones for their antibacterial and antifungal activities against panels of Gram-positive/Gram-negative bacteria as well as fungi. We investigated their potential to develop resistance against both bacteria and fungi by a multi-step resistance-selection method, explored their potential to induce the production of reactive oxygen species, and assessed their toxicity. In summary, we found that these compounds exhibited broad-spectrum antibacterial and antifungal activities against most of the tested strains with minimum inhibitory concentration (MIC) values ranging from <0.5 to >500µM against bacteria and 1.0 to >31.3µg/mL against fungi; and in most cases, they exhibited either superior or similar antimicrobial activity compared to those of the standard drugs used in the clinic. We also observed minimal emergence of drug resistance to these newly synthesized compounds by bacteria and fungi even after 15 passages, and we found weak to moderate inhibition of the human Ether-à-go-go-related gene (hERG) channel with acceptable IC50 values ranging from 1.12 to 3.29µM. Overall, these studies show that bis(N-amidinohydrazones) and N-(amidino)-N'-aryl-bishydrazones are potentially promising scaffolds for the discovery of novel antibacterial and antifungal agents.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Hidrazonas/química , Hidrazonas/farmacologia , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Candida albicans/efeitos dos fármacos , Candidíase/tratamento farmacológico , Linhagem Celular , Descoberta de Drogas , Resistência a Múltiplos Medicamentos , Fungos/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Micoses/tratamento farmacológico
7.
NMR Biomed ; 29(1): 74-83, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26684053

RESUMO

An improved pre-clinical cardiac chemical exchange saturation transfer (CEST) pulse sequence (cardioCEST) was used to selectively visualize paramagnetic CEST (paraCEST)-labeled cells following intramyocardial implantation. In addition, cardioCEST was used to examine the effect of diet-induced obesity upon myocardial creatine CEST contrast. CEST pulse sequences were designed from standard turbo-spin-echo and gradient-echo sequences, and a cardiorespiratory-gated steady-state cine gradient-echo sequence. In vitro validation studies performed in phantoms composed of 20 mM Eu-HPDO3A, 20 mM Yb-HPDO3A, or saline demonstrated similar CEST contrast by spin-echo and gradient-echo pulse sequences. Skeletal myoblast cells (C2C12) were labeled with either Eu-HPDO3A or saline using a hypotonic swelling procedure and implanted into the myocardium of C57B6/J mice. Inductively coupled plasma mass spectrometry confirmed cellular levels of Eu of 2.1 × 10(-3) ng/cell in Eu-HPDO3A-labeled cells and 2.3 × 10(-5) ng/cell in saline-labeled cells. In vivo cardioCEST imaging of labeled cells at ±15 ppm was performed 24 h after implantation and revealed significantly elevated asymmetric magnetization transfer ratio values in regions of Eu-HPDO3A-labeled cells when compared with surrounding myocardium or saline-labeled cells. We further utilized the cardioCEST pulse sequence to examine changes in myocardial creatine in response to diet-induced obesity by acquiring pairs of cardioCEST images at ±1.8 ppm. While ventricular geometry and function were unchanged between mice fed either a high-fat diet or a corresponding control low-fat diet for 14 weeks, myocardial creatine CEST contrast was significantly reduced in mice fed the high-fat diet. The selective visualization of paraCEST-labeled cells using cardioCEST imaging can enable investigation of cell fate processes in cardioregenerative medicine, or multiplex imaging of cell survival with imaging of cardiac structure and function and additional imaging of myocardial creatine.


Assuntos
Rastreamento de Células , Imageamento por Ressonância Magnética/métodos , Miocárdio/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Células Cultivadas , Creatina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
8.
Nat Chem Biol ; 10(11): 924-926, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25218743

RESUMO

The tumor suppressor protein prostate apoptosis response-4 (Par-4), which is secreted by normal cells, selectively induces apoptosis in cancer cells. We identified a 3-arylquinoline derivative, designated Arylquin 1, as a potent Par-4 secretagogue in cell cultures and mice. Mechanistically, Arylquin 1 binds vimentin, displaces Par-4 from vimentin for secretion and triggers the efficient paracrine apoptosis of diverse cancer cells. Thus, targeting vimentin with Par-4 secretagogues efficiently induces paracrine apoptosis of tumor cells.


Assuntos
Aminoquinolinas/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/efeitos dos fármacos , Neoplasias/patologia , Vimentina/antagonistas & inibidores , Aminoquinolinas/administração & dosagem , Aminoquinolinas/química , Animais , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Comunicação Parácrina/efeitos dos fármacos , Vimentina/química
9.
Bioorg Med Chem Lett ; 26(3): 965-968, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26725024

RESUMO

Phosphorylation and dephosphorylation of splicing factors play a key role in pre-mRNA splicing events, and cantharidin and norcantharidin analogs inhibit protein phosphatase-1 (PP1) and change alternative pre-mRNA splicing. Targeted inhibitors capable of selectively inhibiting PP-1 could promote exon 7 inclusion in the survival-of-motorneuron-2 gene (SMN2) and shift the proportion of SMN2 protein from a dysfunctional to a functional form. As a prelude to the development of norcantharidin-tethered oligonucleotide inhibitors, the synthesis a norcantharidin-tethered guanosine was developed in which a suitable tether prevented the undesired cyclization of norcantharidin monoamides to imides and possessed a secondary amine terminus suited to the synthesis of oligonucleotides analogs. Application of this methodology led to the synthesis of a diastereomeric mixture of norcantharidin-tethered guanosines, namely bisammonium (1R,2S,3R,4S)- and (1S,2R,3S,4R)-3-((4-(2-(((((2R,3R,4R,5R)-5-(2-amino-6-oxo-1,6-dihydro-9H-purin-9-yl)-2-(hydroxymethyl)-4-methoxytetrahydrofuran-3-yl)oxy)oxidophosphoryl)oxy)ethyl)-phenethyl)(methyl)carbamoyl)-7-oxabicyclo[2.2.1]heptane-2-carboxylate, which showed activity in an assay for SMN2 pre-mRNA splicing.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/química , Inibidores Enzimáticos/síntese química , Guanosina/análogos & derivados , Proteína Fosfatase 1/antagonistas & inibidores , Processamento Alternativo , Animais , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Guanosina/síntese química , Guanosina/metabolismo , Células HEK293 , Humanos , Camundongos , Proteína Fosfatase 1/metabolismo , RNA Mensageiro/metabolismo , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismo
10.
Org Biomol Chem ; 14(1): 74-84, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26548370

RESUMO

Advanced prostate tumors usually metastasize to the lung, bone, and other vital tissues and are resistant to conventional therapy. Prostate apoptosis response-4 protein (Par-4) is a tumor suppressor that causes apoptosis in therapy-resistant prostate cancer cells by binding specifically to a receptor, Glucose-regulated protein-78 (GRP78), found only on the surface of cancer cells. 3-Arylquinolines or "arylquins" induce normal cells to release Par-4 from the intermediate filament protein, vimentin and promote Par-4 secretion that targets cancer cells in a paracrine manner. A structure-activity study identified arylquins that promote Par-4 secretion, and an evaluation of arylquin binding to the hERG potassium ion channel using a [(3)H]-dofetilide binding assay permitted the identification of structural features that separated this undesired activity from the desired Par-4 secretory activity. A binding study that relied on the natural fluorescence of arylquins and that used the purified rod domain of vimentin (residues 99-411) suggested that the mechanism behind Par-4 release involved arylquin binding to multiple sites in the rod domain.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Quinolonas/metabolismo , Quinolonas/farmacologia , Vimentina/metabolismo , Sítios de Ligação/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Canais de Potássio Éter-A-Go-Go/metabolismo , Humanos , Estrutura Molecular , Quinolonas/química , Estereoisomerismo , Relação Estrutura-Atividade , Vimentina/química
11.
Acta Biochim Biophys Sin (Shanghai) ; 48(1): 82-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26370152

RESUMO

Thymine DNA glycosylase (TDG) is a multifunctional protein that plays important roles in DNA repair, DNA demethylation, and transcriptional regulation. These diverse functions make TDG a unique enzyme in embryonic development and carcinogenesis. This review discusses the molecular function of TDG in human cancers and the previously unrecognized value of TDG as a potential target for drug therapy.


Assuntos
DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Timina DNA Glicosilase/metabolismo , Animais , Carcinogênese , Metilação de DNA , Reparo do DNA , Humanos , Camundongos , Mutação , Neoplasias/metabolismo , Processamento de Proteína Pós-Traducional , Especificidade por Substrato
12.
Bioorg Med Chem Lett ; 25(18): 3897-9, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26243371

RESUMO

Structure-activity relationships (SAR) in 2,5-dichloro-N-(2-methyl-4-nitrophenyl)benzenesulfonamide (FH535) were examined as part of a program to identify agents that inhibit the Wnt/ß-catenin signaling pathway that is frequently upregulated in hepatocellular carcinoma (HCC). FH535 was reported as an inhibitor of both ß-catenin in the Wnt signaling pathway and the peroxisome proliferator-activated receptor (PPAR). A ß-catenin/T-cell factor (TCF)/Lymphoid-enhancer factor (LEF)-dependent assay (i.e., luciferase-based TOPFlash assay) as well as a [(3)H]-thymidine incorporation assay were used to explore SAR modifications of FH535. Although replacing the 2,5-dichlorophenylsulfonyl substituent in FH535 with a 2,6-dihalogenation pattern generally produced more biologically active analogs than FH535, other SAR modifications led only to FH535 analogs with comparable or slightly improved activity in these two assays. The absence of a clear SAR pattern in activity suggested a multiplicity of target effectors for N-aryl benzenesulfonamides.


Assuntos
Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Sulfonamidas/farmacologia , Timidina/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Hepatócitos/metabolismo , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química , Benzenossulfonamidas
13.
Org Biomol Chem ; 13(4): 1053-67, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25412895

RESUMO

The aminomethylation of hydroxylated isoflavones with 2-aminoethanol, 3-amino-1-propanol, 4-amino-1-butanol, and 5-amino-1-pentanol in the presence of excess formaldehyde led principally to 9-(2-hydroalkyl)-9,10-dihydro-4H,8H-chromeno[8,7-e][1,3]-oxazin-4-ones 4 and/or the tautomeric 7-hydroxy-8-(1,3-oxazepan-3-ylmethyl)-4H-chromen-4-ones 5. The ratio of these tautomers was dependent on solvent polarity, electronic effects of aryl substituents in the isoflavone and the structure of the amino alcohol. NMR studies confirmed the interconversion of tautomeric forms.


Assuntos
Aminas/química , Compostos Heterocíclicos/química , Isoflavonas/química , Isoflavonas/síntese química , Técnicas de Química Sintética , Hidroxilação , Isomerismo
14.
Org Biomol Chem ; 13(46): 11292-301, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26416505

RESUMO

The regiospecific Mannich aminomethylation of 7-hydroxyisoflavonoids using bis(N,N-dimethylamino)methane afforded C-8 substituted N,N-dimethylaminomethyl adducts, and the regioselective aminomethylation of 5-hydroxy-7-methoxyisoflavonoids afforded predominantly the C-6 substituted N,N-dimethylaminomethyl adducts. Acetylation of these C-6 or C-8 Mannich bases with potassium acetate in acetic anhydride provided access to the corresponding acetoxymethyl derivatives that were subsequently converted to hydroxymethyl- and methoxymethyl-substituted 5-hydroxy- or 7-hydroxyisoflavonoids related to naturally occurring flavonoids. The C-8 acetoxymethyl, hydroxymethyl or methoxymethyl-substituted isoflavonoids possessed promising inhibitory potency in the low micromolar range in a prostate cancer PC-3 cell proliferation assay.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Isoflavonas/síntese química , Isoflavonas/farmacologia , Bases de Mannich/química , Antineoplásicos/química , Linhagem Celular Tumoral , Humanos , Hidroxilação , Isoflavonas/química , Masculino , Bases de Mannich/síntese química , Metilação , Próstata/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico
15.
Anal Bioanal Chem ; 407(24): 7319-32, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26229026

RESUMO

The metabolism of a promising antineoplastic agent, trans-2,6-difluoro-4'-(N,N-dimethylamino)stilbene (DFS), was studied in mouse, rat, and human liver microsomes using liquid chromatography-tandem mass spectrometry (LC-MS/MS) with the multiple reaction monitoring-information-dependent acquisition-enhanced product ion scan (MRM-IDA-EPI) method. Ten putative metabolites were identified and the structures of four metabolites were confirmed using authentic standards. Since trans-2,6-difluoro-4'-(N-methylamino)stilbene (DMDFS, M1) was present in all species as metabolite and displayed in vitro growth inhibition superior to DFS, its pharmacokinetic profiles were examined in Sprague-Dawley rats using DFS as a comparator. A reliable LC-MS/MS multiple reaction monitoring (MRM) method was subsequently developed and validated for the simultaneous quantification of both DFS and DMDFS in rat plasma for this purpose. Upon intravenous administration (4 mg/kg), DFS had a moderate clearance (Cl = 62.7 ± 23.2 mL/min/kg), terminal elimination half-life (t 1/2 λZ = 299 ± 73 min), and mean transit time (MTT = 123 ± 14 min) with demethylation metabolism accounting for about 10 % of its total clearance. DMDFS possessed an intravenous pharmacokinetic profile similar to DFS. During oral dosing (10 mg/kg) where both DFS and DMDFS were absorbed rapidly, the oral bioavailability of DFS was approximately 2-fold greater than that of DMDFS (DFS: F = 42.1 ± 12.8 %; DMDFS: F = 18.7 ± 3.9 %). Interestingly, the DMDFS exposure after oral dosing of DFS (10 mg/kg) was comparable to that after oral administration of DMDFS (10 mg/kg) alone. As DFS displayed potent anticancer activities and excellent pharmacokinetic profiles, it appears to be a favorable candidate for further pharmaceutical development.


Assuntos
Cromatografia Líquida/métodos , Estilbenos/análise , Estilbenos/farmacocinética , Espectrometria de Massas em Tandem/métodos , Animais , Masculino , Microssomos Hepáticos/metabolismo , Ratos , Ratos Sprague-Dawley
16.
Tetrahedron Lett ; 56(23): 3382-3384, 2015 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-26236052

RESUMO

Nitrosation and cyclization of 4-(3-aminothieno[2,3-b]pyridine-2-yl)-2H-chromen-2-ones 1 afforded substituted 6H-chromeno[3,4-c]pyrido[3',2':4,5]thieno[2,3-e]pyridazin-6-ones 2 that inhibited the intermediary filament protein, vimentin, at low micromolar concentrations. This inhibition promoted the secretion of Prostate Apoptosis Response-4 protein (Par-4), which selectively triggered apoptosis in prostate cancer cells such as CWR22Rv1, LNCaP-derivative C4-2B, PC-3 and its aggressive analog, PC-3 MM2.

17.
J Biol Chem ; 288(5): 3163-73, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23243312

RESUMO

Valerian is an herbal preparation from the roots of Valeriana officinalis used as an anxiolytic and sedative and in the treatment of insomnia. The biological activities of valerian are attributed to valerenic acid and its putative biosynthetic precursor valerenadiene, sesquiterpenes, found in V. officinalis roots. These sesquiterpenes retain an isobutenyl side chain whose origin has been long recognized as enigmatic because a chemical rationalization for their biosynthesis has not been obvious. Using recently developed metabolomic and transcriptomic resources, we identified seven V. officinalis terpene synthase genes (VoTPSs), two that were functionally characterized as monoterpene synthases and three that preferred farnesyl diphosphate, the substrate for sesquiterpene synthases. The reaction products for two of the sesquiterpene synthases exhibiting root-specific expression were characterized by a combination of GC-MS and NMR in comparison to the terpenes accumulating in planta. VoTPS7 encodes for a synthase that biosynthesizes predominately germacrene C, whereas VoTPS1 catalyzes the conversion of farnesyl diphosphate to valerena-1,10-diene. Using a yeast expression system, specific labeled [(13)C]acetate, and NMR, we investigated the catalytic mechanism for VoTPS1 and provide evidence for the involvement of a caryophyllenyl carbocation, a cyclobutyl intermediate, in the biosynthesis of valerena-1,10-diene. We suggest a similar mechanism for the biosynthesis of several other biologically related isobutenyl-containing sesquiterpenes.


Assuntos
Alquil e Aril Transferases/metabolismo , Biocatálise , Vias Biossintéticas , Sesquiterpenos/metabolismo , Valeriana/enzimologia , Vias Biossintéticas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Hidrocarbonetos/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sesquiterpenos/química , Especificidade por Substrato , Valeriana/genética
18.
Bioorg Med Chem Lett ; 24(23): 5534-6, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25452000

RESUMO

Accumulation of Aß in the brains of Alzheimer disease (AD) patients reflects an imbalance between Aß production and clearance from their brains. Alternative cleavage of amyloid precursor protein (APP) by processing proteases generates soluble APP fragments including the neurotoxic amyloid Aß40 and Aß42 peptides that assemble into fibrils and form plaques. Plaque-buildup occurs over an extended time-frame, and the early detection and modulation of plaque formation are areas of active research. Radiolabeled probes for the detection of amyloid plaques and fibrils in living subjects are important for noninvasive evaluation of AD diagnosis, progression, and differentiation of AD from other neurodegenerative diseases and age-related cognitive decline. Tritium-labeled (E,E)-1-[(3)H]-2,5-bis(4'-hydroxy-3'-carbomethoxystyryl)benzene possesses an improved level of chemical stability relative to a previously reported radioiodinated analog for radiometric quantification of Aß plaque and tau pathology in brain tissue and in vitro studies with synthetic Aß and tau fibrils.


Assuntos
Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Benzeno/metabolismo , Trítio/metabolismo , Estrutura Molecular
20.
Bioorg Med Chem Lett ; 24(15): 3546-8, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24915878

RESUMO

Mycosin protease-1 (MycP1) cleaves ESX secretion-associated protein B (EspB) that is a virulence factor of Mycobacterium tuberculosis, and accommodates an octapeptide, AVKAASLG, as a short peptide substrate. Because peptidoboronic acids are known inhibitors of serine proteases, the synthesis and binding of a boronic acid analog of the pentapeptide cleavage product, AVKAA, was studied using MycP1 variants from Mycobacterium thermoresistible (MycP1mth), Mycobacterium smegmatis (MycP1msm) and M. tuberculosis (MycP1mtu). We synthesized the boropentapeptide, HAlaValLysAlaAlaB(OH)2 (1) and the analogous pinanediol PD-protected HAlaValLysAlaAlaBO2(PD) (2) using an Fmoc/Boc peptide strategy. The pinanediol boropentapeptide 2 displayed IC50 values 121.6±25.3 µM for MycP1mth, 93.2±37.3 µM for MycP1msm and 37.9±5.2 µM for MycP1mtu. Such relatively strong binding creates a chance for crystalizing the complex with 2 and finding the structure of the unknown MycP1 catalytic site that would potentially facilitate the development of new anti-tuberculosis drugs.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Ácidos Borônicos/farmacologia , Oligopeptídeos/farmacologia , Inibidores de Proteases/farmacologia , Subtilisinas/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Ácidos Borônicos/síntese química , Ácidos Borônicos/química , Relação Dose-Resposta a Droga , Conformação Molecular , Mycobacterium tuberculosis/enzimologia , Oligopeptídeos/síntese química , Oligopeptídeos/química , Inibidores de Proteases/síntese química , Inibidores de Proteases/química , Relação Estrutura-Atividade , Subtilisinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA