Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(9): 4799-4817, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38613388

RESUMO

Glioblastoma multiforme is a universally lethal brain tumor that largely resists current surgical and drug interventions. Despite important advancements in understanding GBM biology, the invasiveness and heterogeneity of these tumors has made it challenging to develop effective therapies. Therapeutic oligonucleotides-antisense oligonucleotides and small-interfering RNAs-are chemically modified nucleic acids that can silence gene expression in the brain. However, activity of these oligonucleotides in brain tumors remains inadequately characterized. In this study, we developed a quantitative method to differentiate oligonucleotide-induced gene silencing in orthotopic GBM xenografts from gene silencing in normal brain tissue, and used this method to test the differential silencing activity of a chemically diverse panel of oligonucleotides. We show that oligonucleotides chemically optimized for pharmacological activity in normal brain tissue do not show consistent activity in GBM xenografts. We then survey multiple advanced oligonucleotide chemistries for their activity in GBM xenografts. Attaching lipid conjugates to oligonucleotides improves silencing in GBM cells across several different lipid classes. Highly hydrophobic lipid conjugates cholesterol and docosanoic acid enhance silencing but at the cost of higher neurotoxicity. Moderately hydrophobic, unsaturated fatty acid and amphiphilic lipid conjugates still improve activity without compromising safety. These oligonucleotide conjugates show promise for treating glioblastoma.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Oligonucleotídeos Antissenso , RNA Interferente Pequeno , Ensaios Antitumorais Modelo de Xenoenxerto , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Animais , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/uso terapêutico , Humanos , Camundongos , Linhagem Celular Tumoral , Neoplasias Encefálicas/genética , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/uso terapêutico , Inativação Gênica , Camundongos Nus
2.
Nucleic Acids Res ; 52(9): 5273-5284, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38348876

RESUMO

RNA interference (RNAi) is an endogenous process that can be harnessed using chemically modified small interfering RNAs (siRNAs) to potently modulate gene expression in many tissues. The route of administration and chemical architecture are the primary drivers of oligonucleotide tissue distribution, including siRNAs. Independently of the nature and type, oligonucleotides are eliminated from the body through clearance tissues, where their unintended accumulation may result in undesired gene modulation. Divalent siRNAs (di-siRNAs) administered into the CSF induce robust gene silencing throughout the central nervous system (CNS). Upon clearance from the CSF, they are mainly filtered by the kidneys and liver, with the most functionally significant accumulation occurring in the liver. siRNA- and miRNA-induced silencing can be blocked through substrate inhibition using single-stranded, stabilized oligonucleotides called antagomirs or anti-siRNAs. Using APOE as a model target, we show that undesired di-siRNA-induced silencing in the liver can be mitigated through administration of liver targeting GalNAc-conjugated anti-siRNAs, without impacting CNS activity. Blocking unwanted hepatic APOE silencing achieves fully CNS-selective silencing, essential for potential clinical translation. While we focus on CNS/liver selectivity, coadministration of differentially targeting siRNA and anti-siRNAs can be adapted as a strategy to achieve tissue selectivity in different organ combinations.


Assuntos
Sistema Nervoso Central , Interferência de RNA , Animais , Humanos , Masculino , Camundongos , Acetilgalactosamina/química , Antagomirs/genética , Antagomirs/metabolismo , Apolipoproteínas E/genética , Sistema Nervoso Central/metabolismo , Inativação Gênica , Fígado/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
3.
Nucleic Acids Res ; 52(2): 977-997, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38033325

RESUMO

Guide RNAs offer programmability for CRISPR-Cas9 genome editing but also add challenges for delivery. Chemical modification, which has been key to the success of oligonucleotide therapeutics, can enhance the stability, distribution, cellular uptake, and safety of nucleic acids. Previously, we engineered heavily and fully modified SpyCas9 crRNA and tracrRNA, which showed enhanced stability and retained activity when delivered to cultured cells in the form of the ribonucleoprotein complex. In this study, we report that a short, fully stabilized oligonucleotide (a 'protecting oligo'), which can be displaced by tracrRNA annealing, can significantly enhance the potency and stability of a heavily modified crRNA. Furthermore, protecting oligos allow various bioconjugates to be appended, thereby improving cellular uptake and biodistribution of crRNA in vivo. Finally, we achieved in vivo genome editing in adult mouse liver and central nervous system via co-delivery of unformulated, chemically modified crRNAs with protecting oligos and AAV vectors that express tracrRNA and either SpyCas9 or a base editor derivative. Our proof-of-concept establishment of AAV/crRNA co-delivery offers a route towards transient editing activity, target multiplexing, guide redosing, and vector inactivation.


Assuntos
Edição de Genes , RNA Guia de Sistemas CRISPR-Cas , Animais , Camundongos , Distribuição Tecidual , RNA/genética , Oligonucleotídeos
4.
Proc Natl Acad Sci U S A ; 120(27): e2302534120, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37364131

RESUMO

Aberrant alternative splicing of mRNAs results in dysregulated gene expression in multiple neurological disorders. Here, we show that hundreds of mRNAs are incorrectly expressed and spliced in white blood cells and brain tissues of individuals with fragile X syndrome (FXS). Surprisingly, the FMR1 (Fragile X Messenger Ribonucleoprotein 1) gene is transcribed in >70% of the FXS tissues. In all FMR1-expressing FXS tissues, FMR1 RNA itself is mis-spliced in a CGG expansion-dependent manner to generate the little-known FMR1-217 RNA isoform, which is comprised of FMR1 exon 1 and a pseudo-exon in intron 1. FMR1-217 is also expressed in FXS premutation carrier-derived skin fibroblasts and brain tissues. We show that in cells aberrantly expressing mis-spliced FMR1, antisense oligonucleotide (ASO) treatment reduces FMR1-217, rescues full-length FMR1 RNA, and restores FMRP (Fragile X Messenger RibonucleoProtein) to normal levels. Notably, FMR1 gene reactivation in transcriptionally silent FXS cells using 5-aza-2'-deoxycytidine (5-AzadC), which prevents DNA methylation, increases FMR1-217 RNA levels but not FMRP. ASO treatment of cells prior to 5-AzadC application rescues full-length FMR1 expression and restores FMRP. These findings indicate that misregulated RNA-processing events in blood could serve as potent biomarkers for FXS and that in those individuals expressing FMR1-217, ASO treatment may offer a therapeutic approach to mitigate the disorder.


Assuntos
Síndrome do Cromossomo X Frágil , Humanos , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Expansão das Repetições de Trinucleotídeos/genética , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Decitabina , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Oligonucleotídeos , RNA
5.
Proc Natl Acad Sci U S A ; 120(11): e2219523120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36893269

RESUMO

The continuous evolution of SARS-CoV-2 variants complicates efforts to combat the ongoing pandemic, underscoring the need for a dynamic platform for the rapid development of pan-viral variant therapeutics. Oligonucleotide therapeutics are enhancing the treatment of numerous diseases with unprecedented potency, duration of effect, and safety. Through the systematic screening of hundreds of oligonucleotide sequences, we identified fully chemically stabilized siRNAs and ASOs that target regions of the SARS-CoV-2 genome conserved in all variants of concern, including delta and omicron. We successively evaluated candidates in cellular reporter assays, followed by viral inhibition in cell culture, with eventual testing of leads for in vivo antiviral activity in the lung. Previous attempts to deliver therapeutic oligonucleotides to the lung have met with only modest success. Here, we report the development of a platform for identifying and generating potent, chemically modified multimeric siRNAs bioavailable in the lung after local intranasal and intratracheal delivery. The optimized divalent siRNAs showed robust antiviral activity in human cells and mouse models of SARS-CoV-2 infection and represent a new paradigm for antiviral therapeutic development for current and future pandemics.


Assuntos
COVID-19 , Humanos , Animais , Camundongos , RNA Interferente Pequeno/genética , COVID-19/terapia , SARS-CoV-2/genética , Antivirais/farmacologia , Antivirais/uso terapêutico , Oligonucleotídeos , Pulmão
6.
RNA ; 29(7): 1077-1083, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37059467

RESUMO

Preadenylated single-stranded DNA ligation adaptors are essential reagents in many next generation RNA sequencing library preparation protocols. These oligonucleotides can be adenylated enzymatically or chemically. Enzymatic adenylation reactions have high yield but are not amendable to scale up. In chemical adenylation, adenosine 5'-phosphorimidazolide (ImpA) reacts with 5' phosphorylated DNA. It is easily scalable but gives poor yields, requiring labor-intensive cleanup steps. Here, we describe an improved chemical adenylation method using 95% formamide as the solvent, which results in the adenylation of oligonucleotides with >90% yield. In standard conditions, with water as the solvent, hydrolysis of the starting material to adenosine monophosphate limits the yields. To our surprise, we find that rather than increasing adenylation yields by decreasing the rate of ImpA hydrolysis, formamide does so by increasing the reaction rate between ImpA and 5'-phosphorylated DNA by ∼10-fold. The method described here enables straightforward preparation of chemically adenylated adapters with higher than 90% yield, simplifying reagent preparation for NGS.


Assuntos
DNA , Compostos Organofosforados , RNA , Oligonucleotídeos , Sequenciamento de Nucleotídeos em Larga Escala/métodos
7.
Nucleic Acids Res ; 50(22): 12657-12673, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36511872

RESUMO

Friedreich's ataxia is an incurable disease caused by frataxin (FXN) protein deficiency, which is mostly induced by GAA repeat expansion in intron 1 of the FXN gene. Here, we identified antisense oligonucleotides (ASOs), complementary to two regions within the first intron of FXN pre-mRNA, which could increase FXN mRNA by ∼2-fold in patient fibroblasts. The increase in FXN mRNA was confirmed by the identification of multiple overlapping FXN-activating ASOs at each region, two independent RNA quantification assays, and normalization by multiple housekeeping genes. Experiments on cells with the ASO-binding sites deleted indicate that the ASO-induced FXN activation was driven by indirect effects. RNA sequencing analyses showed that the two ASOs induced similar transcriptome-wide changes, which did not resemble the transcriptome of wild-type cells. This RNA-seq analysis did not identify directly base-paired off-target genes shared across ASOs. Mismatch studies identified two guanosine-rich motifs (CCGG and G4) within the ASOs that were required for FXN activation. The phosphorodiamidate morpholino oligomer analogs of our ASOs did not activate FXN, pointing to a PS-backbone-mediated effect. Our study demonstrates the importance of multiple, detailed control experiments and target validation in oligonucleotide studies employing novel mechanisms such as gene activation.


Assuntos
Ataxia de Friedreich , Regulação da Expressão Gênica , Oligonucleotídeos Antissenso , Humanos , Ataxia de Friedreich/genética , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/metabolismo , RNA Mensageiro/metabolismo , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Frataxina
8.
Nucleic Acids Res ; 50(15): 8418-8430, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35920332

RESUMO

The lung is a complex organ with various cell types having distinct roles. Antisense oligonucleotides (ASOs) have been studied in the lung, but it has been challenging to determine their effectiveness in each cell type due to the lack of appropriate analytical methods. We employed three distinct approaches to study silencing efficacy within different cell types. First, we used lineage markers to identify cell types in flow cytometry, and simultaneously measured ASO-induced silencing of cell-surface proteins CD47 or CD98. Second, we applied single-cell RNA sequencing (scRNA-seq) to measure silencing efficacy in distinct cell types; to the best of our knowledge, this is the first time scRNA-seq has been applied to measure the efficacy of oligonucleotide therapeutics. In both approaches, fibroblasts were the most susceptible to locally delivered ASOs, with significant silencing also in endothelial cells. Third, we confirmed that the robust silencing in fibroblasts is broadly applicable by silencing two targets expressed mainly in fibroblasts, Mfap4 and Adam33. Across independent approaches, we demonstrate that intratracheally administered LNA gapmer ASOs robustly induce gene silencing in lung fibroblasts. ASO-induced gene silencing in fibroblasts was durable, lasting 4-8 weeks after a single dose. Thus, lung fibroblasts are well aligned with ASOs as therapeutics.


Assuntos
Células Endoteliais , Fibroblastos/efeitos dos fármacos , Pulmão/citologia , Oligonucleotídeos Antissenso/administração & dosagem , Animais , Fibroblastos/metabolismo , Inativação Gênica , Pulmão/efeitos dos fármacos , Camundongos , Oligonucleotídeos/administração & dosagem , Traqueia/metabolismo
9.
Nat Methods ; 17(10): 1002-1009, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32968250

RESUMO

Chromosome segregation requires both compaction and disentanglement of sister chromatids. We describe SisterC, a chromosome conformation capture assay that distinguishes interactions between and along identical sister chromatids. SisterC employs 5-bromo-2'-deoxyuridine (BrdU) incorporation during S-phase to label newly replicated strands, followed by Hi-C and then the destruction of 5-bromodeoxyuridine-containing strands via Hoechst/ultraviolet treatment. After sequencing of the remaining intact strands, this allows assignment of Hi-C products as inter- and intra-sister interactions based on the strands that reads are mapped to. We performed SisterC on mitotic Saccharomyces cerevisiae cells. We find precise alignment of sister chromatids at centromeres. Along arms, sister chromatids are less precisely aligned, with inter-sister connections every ~35 kilobase (kb). Inter-sister interactions occur between cohesin binding sites that are often offset by 5 to 25 kb. Along sister chromatids, cohesin results in the formation of loops of up to 50 kb. SisterC allows study of the complex interplay between sister chromatid compaction and their segregation during mitosis.


Assuntos
Cromátides/fisiologia , Cromatina/fisiologia , Segregação de Cromossomos/fisiologia , Animais , Reparo do DNA , Replicação do DNA , Regulação da Expressão Gênica , Mitose/fisiologia , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia
10.
J Org Chem ; 88(9): 5341-5347, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37058436

RESUMO

We report a new reactivity for the inverse electron demand Diels-Alder (iEDDA) reaction between norbornene and tetrazine. Instead of simple 1:1 condensation between norbornene- and tetrazine-conjugated biomolecules, we observed that dimeric products were preferentially formed. As such, an olefinic intermediate formed after the addition of the first tetrazine unit to norbornene rapidly undergoes a consecutive cycloaddition reaction with a second tetrazine unit to result in a conjugate with a 1:2 stoichiometric ratio. This unexpected dimer formation was consistently observed in the reactions of both small-molecule norbornenes and tetrazines, as well as oligonucleotide conjugates. When norbornene was replaced with bicyclononyne to bypass the formation of this olefinic reaction intermediate, the reactions resulted exclusively in rapid formation of the expected 1:1 stoichiometric conjugates.

11.
Mol Cell ; 56(1): 29-42, 2014 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-25263592

RESUMO

Enhancer RNAs (eRNAs) are a class of long noncoding RNAs (lncRNA) expressed from active enhancers, whose function and action mechanism are yet to be firmly established. Here we show that eRNAs facilitate the transition of paused RNA polymerase II (RNAPII) into productive elongation by acting as a decoy for the negative elongation factor (NELF) complex upon induction of immediate early genes (IEGs) in neurons. eRNAs are synthesized prior to the culmination of target gene transcription and interact with the NELF complex. Knockdown of eRNAs expressed at neuronal enhancers impairs transient release of NELF from the specific target promoters during transcriptional activation, coinciding with a decrease in target mRNA induction. The enhancer-promoter interaction was unaffected by eRNA knockdown. Instead, chromatin looping might enable eRNAs to act locally at a specific promoter. Our findings highlight the spatiotemporally regulated action mechanism of eRNAs during early transcriptional elongation.


Assuntos
Regulação da Expressão Gênica/fisiologia , Modelos Genéticos , RNA Longo não Codificante/fisiologia , Fatores de Transcrição/fisiologia , Animais , Células Cultivadas , Cromatina/metabolismo , Técnicas de Silenciamento de Genes , Camundongos , Neurônios/metabolismo , RNA Polimerase II/metabolismo , RNA Polimerase II/fisiologia , Fatores de Transcrição/metabolismo
12.
Molecules ; 26(11)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34200016

RESUMO

The increase in antibacterial resistance is a serious challenge for both the health and defence sectors and there is a need for both novel antibacterial targets and antibacterial strategies. RNA degradation and ribonucleases, such as the essential endoribonuclease RNase E, encoded by the rne gene, are emerging as potential antibacterial targets while antisense oligonucleotides may provide alternative antibacterial strategies. As rne mRNA has not been previously targeted using an antisense approach, we decided to explore using antisense oligonucleotides to target the translation initiation region of the Escherichia coli rne mRNA. Antisense oligonucleotides were rationally designed and were synthesised as locked nucleic acid (LNA) gapmers to enable inhibition of rne mRNA translation through two mechanisms. Either LNA gapmer binding could sterically block translation and/or LNA gapmer binding could facilitate RNase H-mediated cleavage of the rne mRNA. This may prove to be an advantage over the majority of previous antibacterial antisense oligonucleotide approaches which used oligonucleotide chemistries that restrict the mode-of-action of the antisense oligonucleotide to steric blocking of translation. Using an electrophoretic mobility shift assay, we demonstrate that the LNA gapmers bind to the translation initiation region of E. coli rne mRNA. We then use a cell-free transcription translation reporter assay to show that this binding is capable of inhibiting translation. Finally, in an in vitro RNase H cleavage assay, the LNA gapmers facilitate RNase H-mediated mRNA cleavage. Although the challenges of antisense oligonucleotide delivery remain to be addressed, overall, this work lays the foundations for the development of a novel antibacterial strategy targeting rne mRNA with antisense oligonucleotides.


Assuntos
Antibacterianos/farmacologia , Endorribonucleases/genética , Escherichia coli/enzimologia , Oligonucleotídeos/farmacologia , Sistema Livre de Células , Endorribonucleases/antagonistas & inibidores , Escherichia coli/efeitos dos fármacos , Proteínas de Escherichia coli/genética , Oligonucleotídeos/síntese química , Iniciação Traducional da Cadeia Peptídica/efeitos dos fármacos , RNA Mensageiro/antagonistas & inibidores
13.
Hum Mol Genet ; 27(6): 1015-1026, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29325021

RESUMO

Fuchs' endothelial corneal dystrophy (FECD) is the most common repeat expansion disorder. FECD impacts 4% of U.S. population and is the leading indication for corneal transplantation. Most cases are caused by an expanded intronic CUG tract in the TCF4 gene that forms nuclear foci, sequesters splicing factors and impairs splicing. We investigated the sense and antisense RNA landscape at the FECD gene and find that the sense-expanded repeat transcript is the predominant species in patient corneas. In patient tissue, sense foci number were negatively correlated with age and showed no correlation with sex. Each endothelial cell has ∼2 sense foci and each foci is single RNA molecule. We designed antisense oligonucleotides (ASOs) to target the mutant-repetitive RNA and demonstrated potent inhibition of foci in patient-derived cells. Ex vivo treatment of FECD human corneas effectively inhibits foci and reverses pathological changes in splicing. FECD has the potential to be a model for treating many trinucleotide repeat diseases and targeting the TCF4 expansion with ASOs represents a promising therapeutic strategy to prevent and treat FECD.


Assuntos
Distrofia Endotelial de Fuchs/genética , Distrofia Endotelial de Fuchs/metabolismo , Fator de Transcrição 4/genética , Idoso , Idoso de 80 Anos ou mais , Alelos , Endotélio Corneano/metabolismo , Feminino , Predisposição Genética para Doença , Humanos , Íntrons , Masculino , Pessoa de Meia-Idade , Oligorribonucleotídeos Antissenso/genética , Oligorribonucleotídeos Antissenso/uso terapêutico , RNA/metabolismo , Splicing de RNA , Fator de Transcrição 4/metabolismo , Fatores de Transcrição/genética , Expansão das Repetições de Trinucleotídeos
14.
Chembiochem ; 21(19): 2792-2804, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32372560

RESUMO

Infrared spectroscopy detects the formation of G-quadruplexes in guanine-rich nucleic acid sequences through shifts in the guanine C=O stretch mode. Here, we use ultrafast 2D infrared (IR) spectroscopy and isotope substitution to show that these shifts arise from vibrational delocalization among stacked G-quartets. This provides a direct measure of the sizes of locally ordered motifs in heterogeneous samples with substantial disordered regions. We find that parallel-stranded, potassium-bound DNA G-quadruplexes are limited to five consecutive G-quartets and 3-4 consecutive layers are preferred for longer polyguanine tracts. The resulting potassium-dependent G-quadruplex assembly landscape reflects the polyguanine tract lengths found in genomes, the ionic conditions prevalent in healthy mammalian cells, and the onset of structural disorder in disease states. Our study describes spectral markers that can be used to probe other G-quadruplex structures and provides insight into the fundamental limits of their formation in biological and artificial systems.


Assuntos
DNA/química , DNA/síntese química , Quadruplex G , Humanos , Conformação de Ácido Nucleico , Tamanho da Partícula , Espectrofotometria Infravermelho
15.
Biochemistry ; 58(6): 582-589, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30520300

RESUMO

We present a new design of mixed-backbone antisense oligonucleotides (ASOs) containing both DNA and peptide nucleic acid (PNA). Previous generations of PNA-DNA chimeras showed low binding affinity, reducing their potential as therapeutics. The addition of a 5'-wing of locked nucleic acid as well as the combination of a modified nucleotide and a PNA monomer at the junction between PNA and DNA yielded high-affinity chimeras. The resulting ASOs demonstrated high serum stability and elicited robust RNase H-mediated cleavage of complementary RNA. These properties allowed the chimeric ASOs to demonstrate high gene silencing efficacy and potency in cells, comparable with those of LNA gapmer ASOs, via both lipid transfection and gymnosis.


Assuntos
Inativação Gênica , Oligonucleotídeos Antissenso/farmacologia , Ácidos Nucleicos Peptídicos/farmacologia , RNA Longo não Codificante/antagonistas & inibidores , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Células Cultivadas , Fibroblastos/metabolismo , Fibroblastos/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Oligonucleotídeos Antissenso/química , Ácidos Nucleicos Peptídicos/química , RNA Longo não Codificante/genética , Ribonuclease H/metabolismo
16.
Lancet ; 401(10377): 631, 2023 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-36842435
17.
Lancet ; 399(10337): 1767-1768, 2022 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-35526543
18.
Bioconjug Chem ; 29(7): 2478-2488, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-29898368

RESUMO

GalNAc conjugation is emerging as a dominant strategy for delivery of therapeutic oligonucleotides to hepatocytes. The structure and valency of the GalNAc ligand contributes to the potency of the conjugates. Here we present a panel of multivalent GalNAc variants using two different synthetic strategies. Specifically, we present a novel conjugate based on a support-bound trivalent GalNAc cluster, and four others using a GalNAc phosphoramidite monomer that was readily assembled into tri- or tetravalent designs during solid phase oligonucleotide synthesis. We compared these compounds to a clinically used trivalent GalNAc cluster both in vitro and in vivo. In vitro, cluster-based and phosphoramidite-based scaffolds show a similar rate of internalization in primary hepatocytes, with membrane binding observed as early as 5 min. All tested compounds provided potent, dose-dependent silencing, with 2-4% of injected dose recoverable from liver after 1 week. The two preassembled trivalent GalNAc clusters showed higher tissue accumulation and gene silencing relative to di-, tri-, or tetravalent GalNAc conjugates assembled via phosphoramidite chemistry.


Assuntos
Acetilgalactosamina/química , RNA Interferente Pequeno/farmacocinética , Animais , Membrana Celular/metabolismo , Células Cultivadas , Inativação Gênica/efeitos dos fármacos , Hepatócitos/metabolismo , Fígado/metabolismo , Substâncias Macromoleculares , Camundongos , Oligonucleotídeos Antissenso/síntese química , Oligonucleotídeos Antissenso/farmacocinética , Compostos Organofosforados , Técnicas de Síntese em Fase Sólida
19.
Nat Commun ; 15(1): 1458, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368418

RESUMO

Nme2Cas9 has been established as a genome editing platform with compact size, high accuracy, and broad targeting range, including single-AAV-deliverable adenine base editors. Here, we engineer Nme2Cas9 to further increase the activity and targeting scope of compact Nme2Cas9 base editors. We first use domain insertion to position the deaminase domain nearer the displaced DNA strand in the target-bound complex. These domain-inlaid Nme2Cas9 variants exhibit shifted editing windows and increased activity in comparison to the N-terminally fused Nme2-ABE. We next expand the editing scope by swapping the Nme2Cas9 PAM-interacting domain with that of SmuCas9, which we had previously defined as recognizing a single-cytidine PAM. We then use these enhancements to introduce therapeutically relevant edits in a variety of cell types. Finally, we validate domain-inlaid Nme2-ABEs for single-AAV delivery in vivo.


Assuntos
Adenina , Proteína 9 Associada à CRISPR , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Adenina/metabolismo , Edição de Genes , DNA/genética , Sistemas CRISPR-Cas
20.
bioRxiv ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38895198

RESUMO

Oligonucleotide therapeutics (ASOs and siRNAs) have been explored for modulation of gene expression in the central nervous system (CNS), with several drugs approved and many in clinical evaluation. Administration of highly concentrated oligonucleotides to the CNS can induce acute neurotoxicity. We demonstrate that delivery of concentrated oligonucleotides to the CSF in awake mice induces acute toxicity, observable within seconds of injection. Electroencephalography (EEG) and electromyography (EMG) in awake mice demonstrated seizures. Using ion chromatography, we show that siRNAs can tightly bind Ca2+ and Mg2+ up to molar equivalents of the phosphodiester (PO)/phosphorothioate (PS) bonds independently of the structure or phosphorothioate content. Optimization of the formulation by adding high concentrations (above biological levels) of divalent cations (Ca2+ alone, Mg2+ alone, or Ca2+ and Mg2+) prevents seizures with no impact on the distribution or efficacy of the oligonucleotide. The data here establishes the importance of adding Ca2+ and Mg2+ to the formulation for the safety of CNS administration of therapeutic oligonucleotides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA