Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(22): 10729-10733, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31036658

RESUMO

Faculty at prestigious institutions produce more scientific papers, receive more citations and scholarly awards, and are typically trained at more-prestigious institutions than faculty with less prestigious appointments. This imbalance is often attributed to a meritocratic system that sorts individuals into more-prestigious positions according to their reputation, past achievements, and potential for future scholarly impact. Here, we investigate the determinants of scholarly productivity and measure their dependence on past training and current work environments. To distinguish the effects of these environments, we apply a matched-pairs experimental design to career and productivity trajectories of 2,453 early-career faculty at all 205 PhD-granting computer science departments in the United States and Canada, who together account for over 200,000 publications and 7.4 million citations. Our results show that the prestige of faculty's current work environment, not their training environment, drives their future scientific productivity, while current and past locations drive prominence. Furthermore, the characteristics of a work environment are more predictive of faculty productivity and impact than mechanisms representing preferential selection or retention of more-productive scholars by more-prestigious departments. These results identify an environmental mechanism for cumulative advantage, in which an individual's past successes are "locked in" via placement into a more prestigious environment, which directly facilitates future success. The scientific productivity of early-career faculty is thus driven by where they work, rather than where they trained for their doctorate, indicating a limited role for doctoral prestige in predicting scientific contributions.

2.
Proc Natl Acad Sci U S A ; 114(44): E9216-E9223, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29042510

RESUMO

A scientist may publish tens or hundreds of papers over a career, but these contributions are not evenly spaced in time. Sixty years of studies on career productivity patterns in a variety of fields suggest an intuitive and universal pattern: Productivity tends to rise rapidly to an early peak and then gradually declines. Here, we test the universality of this conventional narrative by analyzing the structures of individual faculty productivity time series, constructed from over 200,000 publications and matched with hiring data for 2,453 tenure-track faculty in all 205 PhD-granting computer science departments in the United States and Canada. Unlike prior studies, which considered only some faculty or some institutions, or lacked common career reference points, here we combine a large bibliographic dataset with comprehensive information on career transitions that covers an entire field of study. We show that the conventional narrative confidently describes only one-fifth of faculty, regardless of department prestige or researcher gender, and the remaining four-fifths of faculty exhibit a rich diversity of productivity patterns. To explain this diversity, we introduce a simple model of productivity trajectories and explore correlations between its parameters and researcher covariates, showing that departmental prestige predicts overall individual productivity and the timing of the transition from first- to last-author publications. These results demonstrate the unpredictability of productivity over time and open the door for new efforts to understand how environmental and individual factors shape scientific productivity.


Assuntos
Docentes/estatística & dados numéricos , Publicações/estatística & dados numéricos , Editoração/estatística & dados numéricos , Pesquisadores/estatística & dados numéricos , Mobilidade Ocupacional , Eficiência , Humanos , Narração
3.
BMC Bioinformatics ; 12: 41, 2011 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-21281493

RESUMO

BACKGROUND: Computational analysis of metagenomes requires the taxonomical assignment of the genome contigs assembled from DNA reads of environmental samples. Because of the diverse nature of microbiomes, the length of the assemblies obtained can vary between a few hundred bp to a few hundred Kbp. Current taxonomic classification algorithms provide accurate classification for long contigs or for short fragments from organisms that have close relatives with annotated genomes. These are significant limitations for metagenome analysis because of the complexity of microbiomes and the paucity of existing annotated genomes. RESULTS: We propose a robust taxonomic classification method, RAIphy, that uses a novel sequence similarity metric with iterative refinement of taxonomic models and functions effectively without these limitations. We have tested RAIphy with synthetic metagenomics data ranging between 100 bp to 50 Kbp. Within a sequence read range of 100 bp-1000 bp, the sensitivity of RAIphy ranges between 38%-81% outperforming the currently popular composition-based methods for reads in this range. Comparison with computationally more intensive sequence similarity methods shows that RAIphy performs competitively while being significantly faster. The sensitivity-specificity characteristics for relatively longer contigs were compared with the PhyloPythia and TACOA algorithms. RAIphy performs better than these algorithms at varying clade-levels. For an acid mine drainage (AMD) metagenome, RAIphy was able to taxonomically bin the sequence read set more accurately than the currently available methods, Phymm and MEGAN, and more accurately in two out of three tests than the much more computationally intensive method, PhymmBL. CONCLUSIONS: With the introduction of the relative abundance index metric and an iterative classification method, we propose a taxonomic classification algorithm that performs competitively for a large range of DNA contig lengths assembled from metagenome data. Because of its speed, simplicity, and accuracy RAIphy can be successfully used in the binning process for a broad range of metagenomic data obtained from environmental samples.


Assuntos
Algoritmos , Metagenômica/métodos , Filogenia , Análise de Sequência de DNA , Software
4.
Sci Adv ; 7(9)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33627417

RESUMO

Across academia, men and women tend to publish at unequal rates. Existing explanations include the potentially unequal impact of parenthood on scholarship, but a lack of appropriate data has prevented its clear assessment. Here, we quantify the impact of parenthood on scholarship using an extensive survey of the timing of parenthood events, longitudinal publication data, and perceptions of research expectations among 3064 tenure-track faculty at 450 Ph.D.-granting computer science, history, and business departments across the United States and Canada, along with data on institution-specific parental leave policies. Parenthood explains most of the gender productivity gap by lowering the average short-term productivity of mothers, even as parents tend to be slightly more productive on average than nonparents. However, the size of productivity penalty for mothers appears to have shrunk over time. Women report that paid parental leave and adequate childcare are important factors in their recruitment and retention. These results have broad implications for efforts to improve the inclusiveness of scholarship.

5.
BMC Bioinformatics ; 11: 601, 2010 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-21167044

RESUMO

BACKGROUND: We propose a sequence clustering algorithm and compare the partition quality and execution time of the proposed algorithm with those of a popular existing algorithm. The proposed clustering algorithm uses a grammar-based distance metric to determine partitioning for a set of biological sequences. The algorithm performs clustering in which new sequences are compared with cluster-representative sequences to determine membership. If comparison fails to identify a suitable cluster, a new cluster is created. RESULTS: The performance of the proposed algorithm is validated via comparison to the popular DNA/RNA sequence clustering approach, CD-HIT-EST, and to the recently developed algorithm, UCLUST, using two different sets of 16S rDNA sequences from 2,255 genera. The proposed algorithm maintains a comparable CPU execution time with that of CD-HIT-EST which is much slower than UCLUST, and has successfully generated clusters with higher statistical accuracy than both CD-HIT-EST and UCLUST. The validation results are especially striking for large datasets. CONCLUSIONS: We introduce a fast and accurate clustering algorithm that relies on a grammar-based sequence distance. Its statistical clustering quality is validated by clustering large datasets containing 16S rDNA sequences.


Assuntos
Algoritmos , RNA Ribossômico 16S/análise , Análise de Sequência de RNA/métodos , Sequência de Bases , Análise por Conglomerados
6.
PLoS One ; 13(8): e0202223, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30157278

RESUMO

The composition of the scientific workforce shapes the direction of scientific research, directly through the selection of questions to investigate, and indirectly through its influence on the training of future scientists. In most fields, however, complete census information is difficult to obtain, complicating efforts to study workforce dynamics and the effects of policy. This is particularly true in computer science, which lacks a single, all-encompassing directory or professional organization. A full census of computer science would serve many purposes, not the least of which is a better understanding of the trends and causes of unequal representation in computing. Previous academic census efforts have relied on narrow or biased samples, or on professional society membership rolls. A full census can be constructed directly from online departmental faculty directories, but doing so by hand is expensive and time-consuming. Here, we introduce a topical web crawler for automating the collection of faculty information from web-based department rosters, and demonstrate the resulting system on the 205 PhD-granting computer science departments in the U.S. and Canada. This method can quickly construct a complete census of the field, and achieve over 99% precision and recall. We conclude by comparing the resulting 2017 census to a hand-curated 2011 census to quantify turnover and retention in computer science, in general and for female faculty in particular, demonstrating the types of analysis made possible by automated census construction.


Assuntos
Docentes , Informática/educação , Canadá , Censos , Docentes/organização & administração , Docentes/estatística & dados numéricos , Feminino , Humanos , Internet , Masculino , Reorganização de Recursos Humanos , Estados Unidos , Mulheres
7.
PLoS One ; 12(7): e0179459, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28678805

RESUMO

Persistent atrial fibrillation (AF) can be viewed as disintegrated patterns of information transmission by action potential across the communication network consisting of nodes linked by functional connectivity. To test the hypothesis that ablation of persistent AF is associated with improvement in both local and global connectivity within the communication networks, we analyzed multi-electrode basket catheter electrograms of 22 consecutive patients (63.5 ± 9.7 years, 78% male) during persistent AF before and after the focal impulse and rotor modulation-guided ablation. Eight patients (36%) developed recurrence within 6 months after ablation. We defined communication networks of AF by nodes (cardiac tissue adjacent to each electrode) and edges (mutual information between pairs of nodes). To evaluate patient-specific parameters of communication, thresholds of mutual information were applied to preserve 10% to 30% of the strongest edges. There was no significant difference in network parameters between both atria at baseline. Ablation effectively rewired the communication network of persistent AF to improve the overall connectivity. In addition, successful ablation improved local connectivity by increasing the average clustering coefficient, and also improved global connectivity by decreasing the characteristic path length. As a result, successful ablation improved the efficiency and robustness of the communication network by increasing the small-world index. These changes were not observed in patients with AF recurrence. Furthermore, a significant increase in the small-world index after ablation was associated with synchronization of the rhythm by acute AF termination. In conclusion, successful ablation rewires communication networks during persistent AF, making it more robust, efficient, and easier to synchronize. Quantitative analysis of communication networks provides not only a mechanistic insight that AF may be sustained by spatially localized sources and global connectivity, but also patient-specific metrics that could serve as a valid endpoint for therapeutic interventions.


Assuntos
Fibrilação Atrial/cirurgia , Ablação por Cateter/métodos , Eletrocardiografia/métodos , Sistema de Condução Cardíaco/cirurgia , Idoso , Algoritmos , Fibrilação Atrial/fisiopatologia , Feminino , Coração/fisiopatologia , Átrios do Coração/fisiopatologia , Átrios do Coração/cirurgia , Sistema de Condução Cardíaco/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Cardiovasculares , Recidiva , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA