Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 629(8014): 1015-1020, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38811709

RESUMO

Asteroids with diameters less than about 5 km have complex histories because they are small enough for radiative torques (that is, YORP, short for the Yarkovsky-O'Keefe-Radzievskii-Paddack effect)1 to be a notable factor in their evolution2. (152830) Dinkinesh is a small asteroid orbiting the Sun near the inner edge of the main asteroid belt with a heliocentric semimajor axis of 2.19 AU; its S-type spectrum3,4 is typical of bodies in this part of the main belt5. Here we report observations by the Lucy spacecraft6,7 as it passed within 431 km of Dinkinesh. Lucy revealed Dinkinesh, which has an effective diameter of only 720 m, to be unexpectedly complex. Of particular note is the presence of a prominent longitudinal trough overlain by a substantial equatorial ridge and the discovery of the first confirmed contact binary satellite, now named (152830) Dinkinesh I Selam. Selam consists of two near-equal-sized lobes with diameters of 210 m and 230 m. It orbits Dinkinesh at a distance of 3.1 km with an orbital period of about 52.7 h and is tidally locked. The dynamical state, angular momentum and geomorphologic observations of the system lead us to infer that the ridge and trough of Dinkinesh are probably the result of mass failure resulting from spin-up by YORP followed by the partial reaccretion of the shed material. Selam probably accreted from material shed by this event.

2.
Nature ; 616(7957): 452-456, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36858074

RESUMO

Some active asteroids have been proposed to be formed as a result of impact events1. Because active asteroids are generally discovered by chance only after their tails have fully formed, the process of how impact ejecta evolve into a tail has, to our knowledge, not been directly observed. The Double Asteroid Redirection Test (DART) mission of NASA2, in addition to having successfully changed the orbital period of Dimorphos3, demonstrated the activation process of an asteroid resulting from an impact under precisely known conditions. Here we report the observations of the DART impact ejecta with the Hubble Space Telescope from impact time T + 15 min to T + 18.5 days at spatial resolutions of around 2.1 km per pixel. Our observations reveal the complex evolution of the ejecta, which are first dominated by the gravitational interaction between the Didymos binary system and the ejected dust and subsequently by solar radiation pressure. The lowest-speed ejecta dispersed through a sustained tail that had a consistent morphology with previously observed asteroid tails thought to be produced by an impact4,5. The evolution of the ejecta after the controlled impact experiment of DART thus provides a framework for understanding the fundamental mechanisms that act on asteroids disrupted by a natural impact1,6.

3.
Nature ; 559(7713): 223-226, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29950718

RESUMO

'Oumuamua (1I/2017 U1) is the first known object of interstellar origin to have entered the Solar System on an unbound and hyperbolic trajectory with respect to the Sun1. Various physical observations collected during its visit to the Solar System showed that it has an unusually elongated shape and a tumbling rotation state1-4 and that the physical properties of its surface resemble those of cometary nuclei5,6, even though it showed no evidence of cometary activity1,5,7. The motion of all celestial bodies is governed mostly by gravity, but the trajectories of comets can also be affected by non-gravitational forces due to cometary outgassing8. Because non-gravitational accelerations are at least three to four orders of magnitude weaker than gravitational acceleration, the detection of any deviation from a purely gravity-driven trajectory requires high-quality astrometry over a long arc. As a result, non-gravitational effects have been measured on only a limited subset of the small-body population9. Here we report the detection, at 30σ significance, of non-gravitational acceleration in the motion of 'Oumuamua. We analyse imaging data from extensive observations by ground-based and orbiting facilities. This analysis rules out systematic biases and shows that all astrometric data can be described once a non-gravitational component representing a heliocentric radial acceleration proportional to r-2 or r-1 (where r is the heliocentric distance) is included in the model. After ruling out solar-radiation pressure, drag- and friction-like forces, interaction with solar wind for a highly magnetized object, and geometric effects originating from 'Oumuamua potentially being composed of several spatially separated bodies or having a pronounced offset between its photocentre and centre of mass, we find comet-like outgassing to be a physically viable explanation, provided that 'Oumuamua has thermal properties similar to comets.

4.
Nat Commun ; 13(1): 1542, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35351895

RESUMO

The New Horizons spacecraft returned images and compositional data showing that terrains on Pluto span a variety of ages, ranging from relatively ancient, heavily cratered areas to very young surfaces with few-to-no impact craters. One of the regions with very few impact craters is dominated by enormous rises with hummocky flanks. Similar features do not exist anywhere else in the imaged solar system. Here we analyze the geomorphology and composition of the features and conclude this region was resurfaced by cryovolcanic processes, of a type and scale so far unique to Pluto. Creation of this terrain requires multiple eruption sites and a large volume of material (>104 km3) to form what we propose are multiple, several-km-high domes, some of which merge to form more complex planforms. The existence of these massive features suggests Pluto's interior structure and evolution allows for either enhanced retention of heat or more heat overall than was anticipated before New Horizons, which permitted mobilization of water-ice-rich materials late in Pluto's history.

5.
Science ; 351(6279): aad8866, 2016 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-26989258

RESUMO

Observations made during the New Horizons flyby provide a detailed snapshot of the current state of Pluto's atmosphere. Whereas the lower atmosphere (at altitudes of less than 200 kilometers) is consistent with ground-based stellar occultations, the upper atmosphere is much colder and more compact than indicated by pre-encounter models. Molecular nitrogen (N2) dominates the atmosphere (at altitudes of less than 1800 kilometers or so), whereas methane (CH4), acetylene (C2H2), ethylene (C2H4), and ethane (C2H6) are abundant minor species and likely feed the production of an extensive haze that encompasses Pluto. The cold upper atmosphere shuts off the anticipated enhanced-Jeans, hydrodynamic-like escape of Pluto's atmosphere to space. It is unclear whether the current state of Pluto's atmosphere is representative of its average state--over seasonal or geologic time scales.

6.
Science ; 351(6279): 1284-93, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26989245

RESUMO

NASA's New Horizons spacecraft has revealed the complex geology of Pluto and Charon. Pluto's encounter hemisphere shows ongoing surface geological activity centered on a vast basin containing a thick layer of volatile ices that appears to be involved in convection and advection, with a crater retention age no greater than ~10 million years. Surrounding terrains show active glacial flow, apparent transport and rotation of large buoyant water-ice crustal blocks, and pitting, the latter likely caused by sublimation erosion and/or collapse. More enigmatic features include tall mounds with central depressions that are conceivably cryovolcanic and ridges with complex bladed textures. Pluto also has ancient cratered terrains up to ~4 billion years old that are extensionally faulted and extensively mantled and perhaps eroded by glacial or other processes. Charon does not appear to be currently active, but experienced major extensional tectonism and resurfacing (probably cryovolcanic) nearly 4 billion years ago. Impact crater populations on Pluto and Charon are not consistent with the steepest impactor size-frequency distributions proposed for the Kuiper belt.

7.
Science ; 318(5848): 232-4, 2007 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-17932287

RESUMO

The dusty jovian ring system must be replenished continuously from embedded source bodies. The New Horizons spacecraft has performed a comprehensive search for kilometer-sized moons within the system, which might have revealed the larger members of this population. No new moons were found, however, indicating a sharp cutoff in the population of jovian bodies smaller than 8-kilometer-radius Adrastea. However, the search revealed two families of clumps in the main ring: one close pair and one cluster of three to five. All orbit within a brighter ringlet just interior to Adrastea. Their properties are very different from those of the few other clumpy rings known; the origin and nonrandom distribution of these features remain unexplained, but resonant confinement by Metis may play a role.

8.
Science ; 318(5848): 229-31, 2007 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-17932286

RESUMO

Observations of Jupiter's nightside airglow (nightglow) and aurora obtained during the flyby of the New Horizons spacecraft show an unexpected lack of ultraviolet nightglow emissions, in contrast to the case during the Voyager flybys in 1979. The flux and average energy of precipitating electrons generally decrease with increasing local time across the nightside, consistent with a possible source region along the dusk flank of Jupiter's magnetosphere. Visible emissions associated with the interaction of Jupiter and its satellite Io extend to a surprisingly high altitude, indicating localized low-energy electron precipitation. These results indicate that the interaction between Jupiter's upper atmosphere and near-space environment is variable and poorly understood; extensive observations of the day side are no guide to what goes on at night.


Assuntos
Júpiter , Meio Ambiente Extraterreno , Hidrocarbonetos , Hidrogênio , Magnetismo , Astronave
9.
Science ; 318(5848): 226-9, 2007 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-17932285

RESUMO

Although lightning has been seen on other planets, including Jupiter, polar lightning has been known only on Earth. Optical observations from the New Horizons spacecraft have identified lightning at high latitudes above Jupiter up to 80 degrees N and 74 degrees S. Lightning rates and optical powers were similar at each pole, and the mean optical flux is comparable to that at nonpolar latitudes, which is consistent with the notion that internal heat is the main driver of convection. Both near-infrared and ground-based 5-micrometer thermal imagery reveal that cloud cover has thinned substantially since the 2000 Cassini flyby, particularly in the turbulent wake of the Great Red Spot and in the southern half of the equatorial region, demonstrating that vertical dynamical processes are time-varying on seasonal scales at mid- and low latitudes on Jupiter.

10.
Science ; 304(5678): 1760-2, 2004 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-15205522
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA