Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am Nat ; 200(3): 383-400, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35977786

RESUMO

AbstractThe remarkable evolutionary success of placental mammals has been partly attributed to their reproductive strategy of prolonged gestation and birthing of relatively precocial, quickly weaned neonates. Although this strategy was conventionally considered derived relative to that of marsupials with highly altricial neonates and long lactation periods, mounting evidence has challenged this view. Until now the fossil record has been relatively silent on this debate, but here we find that proportions of different bone tissue microstructures in the femoral cortices of small extant marsupials and placentals correlate with length of lactation period, allowing us to apply this histological correlate of reproductive strategies to Late Cretaceous and Paleocene members of Multituberculata, an extinct mammalian clade that is phylogenetically stemward of Theria. Multituberculate bone histology closely resembles that of placentals, suggesting that they had similar life history strategies. A stem-therian clade exhibiting evidence of placental-like life histories supports the hypothesis that intense maternal-fetal contact characteristic of placentals is ancestral for therians. Alternatively, multituberculates and placentals may have independently evolved prolonged gestation and abbreviated lactation periods. Our results challenge the hypothesis that the rise of placental mammals was driven by unique life history innovations and shed new light on early mammalian diversification.


Assuntos
Características de História de Vida , Marsupiais , Animais , Evolução Biológica , Feminino , Mamíferos , Filogenia , Placenta , Gravidez
2.
Evolution ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771219

RESUMO

Tests of phenotypic convergence can provide evidence of adaptive evolution, and the popularity of such studies has grown in recent years due to the development of novel, quantitative methods for identifying and measuring convergence. These methods include the commonly applied C1-C4 measures of Stayton (2015), which measure morphological distances between lineages, and Ornstein-Uhlenbeck (OU) model-fitting analyses, which test whether lineages converged on shared adaptive peaks. We test the performance of C-measures and other convergence measures under various evolutionary scenarios and reveal a critical issue with C-measures: they often misidentify divergent lineages as convergent. We address this issue by developing novel convergence measures- Ct1-Ct4-measures -that calculate distances between lineages at specific points in time, minimizing the possibility of misidentifying divergent taxa as convergent. Ct-measures are most appropriate when focal lineages are of the same or similar geologic ages (e.g., extant taxa), meaning that the lineages' evolutionary histories include considerable overlap in time. Beyond C-measures, we find that all convergence measures are influenced by the position of focal taxa in phenotypic space, with morphological outliers often statistically more likely to be measured as strongly convergent. Further, we mimic scenarios in which researchers assess convergence using OU models with a priori regime assignments (e.g., classifying taxa by ecological traits) and find that multiple-regime OU models with phenotypically divergent lineages assigned to a shared selective regime often outperform simpler models. This highlights that model support for these multiple-regime OU models should not be assumed to always reflect convergence among focal lineages of a shared regime. Our new Ct1-Ct4-measures provide researchers with an improved comparative tool, but we emphasize that all available convergence measures are imperfect, and researchers should recognize the limitations of these methods and use multiple lines of evidence to test convergence hypotheses.

3.
Nat Ecol Evol ; 5(1): 32-37, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33139921

RESUMO

When sociality evolved and in which groups remain open questions in mammalian evolution, largely due to the fragmentary Mesozoic mammal fossil record. Nevertheless, exceptionally preserved fossils collected in well-constrained geologic and spatial frameworks can provide glimpses into these more fleeting aspects of early mammalian behaviour. Here we report on exceptional specimens of a multituberculate, Filikomys primaevus gen. nov., from the Late Cretaceous of Montana, primarily occurring as multi-individual, monospecific aggregates of semi-articulated skulls and skeletons within a narrow stratigraphic (~9 cm thick) and geographic (<32 m2) interval. Taphonomic and geologic evidence indicates that F. primaevus engaged in multigenerational, group-nesting and burrowing behaviour, representing the first example of social behaviour in a Mesozoic mammal. That F. primaevus was a digger is further supported by functional morphological and morphometric analyses of its postcranium. The social behaviour of F. primaevus suggests that the capacity for mammals to form social groups extends back to the Mesozoic and is not restricted to therians. Sociality is probably an evolutionarily labile trait that has arisen numerous times during mammalian evolution.


Assuntos
Dinossauros , Animais , Evolução Biológica , Fósseis , Mamíferos , Comportamento Social
4.
Curr Zool ; 66(5): 539-553, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33293932

RESUMO

Selective pressures favor morphologies that are adapted to distinct ecologies, resulting in trait partitioning among ecomorphotypes. However, the effects of these selective pressures vary across taxa, especially because morphology is also influenced by factors such as phylogeny, body size, and functional trade-offs. In this study, we examine how these factors impact functional diversification in mammals. It has been proposed that trait partitioning among mammalian ecomorphotypes is less pronounced at small body sizes due to biomechanical, energetic, and environmental factors that favor a "generalist" body plan, whereas larger taxa exhibit more substantial functional adaptations. We title this the Divergence Hypothesis (DH) because it predicts greater morphological divergence among ecomorphotypes at larger body sizes. We test DH by using phylogenetic comparative methods to examine the postcranial skeletons of 129 species of taxonomically diverse, small-to-medium-sized (<15 kg) mammals, which we categorize as either "tree-dwellers" or "ground-dwellers." In some analyses, the morphologies of ground-dwellers and tree-dwellers suggest greater between-group differentiation at larger sizes, providing some evidence for DH. However, this trend is neither particularly strong nor supported by all analyses. Instead, a more pronounced pattern emerges that is distinct from the predictions of DH: within-group phenotypic disparity increases with body size in both ground-dwellers and tree-dwellers, driven by morphological outliers among "medium"-sized mammals. Thus, evolutionary increases in body size are more closely linked to increases in within-locomotor-group disparity than to increases in between-group disparity. We discuss biomechanical and ecological factors that may drive these evolutionary patterns, and we emphasize the significant evolutionary influences of ecology and body size on phenotypic diversity.

5.
Evolution ; 74(12): 2662-2680, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32886353

RESUMO

Ecology and biomechanics play central roles in the generation of phenotypic diversity. When unrelated taxa invade a similar ecological niche, biomechanical demands can drive convergent morphological transformations. Thus, examining convergence helps to elucidate the key catalysts of phenotypic change. Gliding mammals are often presented as a classic case of convergent evolution because they independently evolved in numerous clades, each possessing patagia ("wing" membranes) that generate lift during gliding. We use phylogenetic comparative methods to test whether the skeletal morphologies of the six clades of extant gliding mammals demonstrate convergence. Our results indicate that glider skeletons are convergent, with glider groups consistently evolving proportionally longer, more gracile limbs than arborealists, likely to increase patagial surface area. Nonetheless, we interpret gliders to represent incomplete convergence because (1) evolutionary model-fitting analyses do not indicate strong selective pressures for glider trait optima, (2) the three marsupial glider groups diverge rather than converge, and (3) the gliding groups remain separated in morphospace (rather than converging on a single morphotype), which is reflected by an unexpectedly high level of morphological disparity. That glider skeletons are morphologically diverse is further demonstrated by fossil gliders from the Mesozoic Era, which possess unique skeletal characteristics that are absent in extant gliders. Glider morphologies may be strongly influenced by factors such as body size and attachment location of patagia on the forelimb, which can vary among clades. Thus, convergence in gliders appears to be driven by a simple lengthening of the limbs, whereas additional skeletal traits reflect nuances of the gliding apparatus that are distinct among different evolutionary lineages. Our unexpected results add to growing evidence that incomplete convergence is prevalent in vertebrate clades, even among classic cases of convergence, and they highlight the importance of examining form-function relationships in light of phylogeny, biomechanics, and the fossil record.


Assuntos
Adaptação Biológica , Evolução Biológica , Locomoção , Mamíferos/anatomia & histologia , Esqueleto , Animais , Comportamento Animal , Fósseis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA