Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Cell Sci ; 127(Pt 6): 1203-13, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24463815

RESUMO

The membrane-anchored collagenase membrane type 1 matrix metalloprotease (MT1-MMP) has been shown to play an essential role during epithelial tubulogenesis in 3D collagen matrices; however, its regulation during tubulogenesis is not understood. Here, we report that degradation of collagen in polarized epithelial cells is post-translationally regulated by changing the localization of MT1-MMP from the apical to the basal surface. MT1-MMP predominantly localizes at the apical surface in inert polarized epithelial cells, whereas treatment with HGF induced basal localization of MT1-MMP followed by collagen degradation. The basal localization of MT1-MMP requires the ectodomains of the enzyme because deletion of the MT-loop region or the hemopexin domain inhibited basal localization of the enzyme. TGFß is a well-known inhibitor of tubulogenesis and our data indicate that its mechanism of inhibition is, at least in part, due to inhibition of MT1-MMP localization to the basal surface. Interestingly, however, the effect of TGFß was found to be bi-phasic: at high doses it effectively inhibited basal localization of MT1-MMP, whereas at lower doses tubulogenesis and basal localization of MT1-MMP was promoted. Taken together, these data indicate that basal localization of MT1-MMP is a key factor promoting the degradation of extracellular matrix by polarized epithelial cells, and that this is an essential part of epithelial morphogenesis in 3D collagen.


Assuntos
Membrana Celular/enzimologia , Colágeno/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Animais , Movimento Celular , Polaridade Celular , Meios de Cultura , Cães , Fator de Crescimento de Hepatócito/fisiologia , Humanos , Células Madin Darby de Rim Canino , Camundongos , Organogênese , Transporte Proteico , Proteólise
2.
J Biol Chem ; 288(49): 35126-37, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24165131

RESUMO

Localization of membrane type I matrix metalloproteinase (MT1-MMP) to the leading edge is thought to be a crucial step during cancer cell invasion. However, its mechanisms and functional impact on cellular invasion have not been clearly defined. In this report, we have identified the MT-LOOP, a loop region in the catalytic domain of MT1-MMP ((163)PYAYIREG(170)), as an essential region for MT1-MMP to promote cellular invasion. Deletion of the MT-LOOP effectively inhibited functions of MT1-MMP on the cell surface, including proMMP-2 activation, degradation of gelatin and collagen films, and cellular invasion into a collagen matrix. This is not due to loss of the catalytic function of MT1-MMP but due to inefficient localization of the enzyme to ß1-integrin-rich cell adhesion complexes at the plasma membrane. We also found that an antibody that specifically recognizes the MT-LOOP region of MT1-MMP (LOOPAb) inhibited MT1-MMP functions, fully mimicking the phenotype of the MT-LOOP deletion mutant. We therefore propose that the MT-LOOP region is an interface for molecular interactions that mediate enzyme localization to cell adhesion complexes and regulate MT1-MMP functions. Our findings have revealed a novel mechanism regulating MT1-MMP during cellular invasion and have identified the MT-LOOP as a potential exosite target region to develop selective MT1-MMP inhibitors.


Assuntos
Adesão Celular/fisiologia , Metaloproteinase 14 da Matriz/química , Metaloproteinase 14 da Matriz/fisiologia , Invasividade Neoplásica/fisiopatologia , Sequência de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Precursores Enzimáticos/metabolismo , Matriz Extracelular/fisiologia , Gelatinases/metabolismo , Células HeLa , Humanos , Metaloproteinase 14 da Matriz/genética , Modelos Biológicos , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Deleção de Sequência
3.
Ecology ; 103(5): e3658, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35129842

RESUMO

Changes in climate can alter the phenology of organisms, potentially decoupling partners within mutualisms. Previous studies have shown that plant and pollinator phenologies are shifting over time, but these shifts have primarily been documented for generalists and within small geographic regions, and the specific climatic cues regulating these shifts are not well understood. We examined phenological shifts in a specialist pollinator and its host plant species over a 117-year study period using a digitized data set of more than 4000 unique collection records. We assessed how climatic cues regulate these organisms' phenologies using PRISM weather data associated with each record. We tested the hypothesis that rates of phenological change would be greater at northern latitudes. We found that the phenology of the specialist bee pollinator Habropoda laboriosa is changing over time, but at different rates across its range. Specifically, phenology is advancing to a greater degree in more northern populations, with increasing phenological advances of 0.04 days/year with each degree of latitude, and with a delay in phenology in more southern populations. In contrast, only one species in the host plant genus Vaccinium is experiencing phenological change over time. For this plant, rates of change are also variable across latitudes, but in a pattern opposite that of the bee; while phenology is advancing across its range, rates of advance are highest in more southern populations, with decreasing phenological advances of 0.01 days/year with each degree of latitude. The phenologies of both the bee and three of four Vaccinium spp. were regulated primarily by spring temperature, with phenologies overall advancing with increasing temperature, and with the strongest responses shown by the bee in northern populations. Our study provides partial support for the hypothesis that phenologies advance most at northern latitudes, but demonstrates that pollinators and plants do not adhere similarly to this prediction. Additionally, we illustrate the potential for phenological mismatch between a specialist pollinator and its host plants by showing that plants and pollinators are advancing their phenologies at different rates across space and time and with differing responses to changing climatic cues.


Assuntos
Mudança Climática , Plantas , Animais , Abelhas , Estações do Ano , Simbiose , Temperatura
4.
J Clin Oncol ; 28(11): 1896-903, 2010 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-20212248

RESUMO

PURPOSE In studies of diffuse large B-cell lymphoma, positron emission tomography with [(18)F]fluorodeoxyglucose (FDG-PET) performed after two to four cycles of chemotherapy has demonstrated prognostic significance. However, some patients treated with immunochemotherapy experience a favorable long-term outcome despite a positive interim FDG-PET scan. To clarify the significance of interim FDG-PET scans, we prospectively studied interim FDG-positive disease within a risk-adapted sequential immunochemotherapy program. PATIENTS AND METHODS From March 2002 to November 2006, 98 patients at Memorial Sloan-Kettering Cancer Center received induction therapy with four cycles of accelerated R-CHOP (rituximab + cyclophosphamide, doxorubicin, vincristine, and prednisone) followed by an interim FDG-PET scan. If the FDG-PET scan was negative, patients received three cycles of ICE (ifosfamide, carboplatin, and etoposide) consolidation therapy. If residual FDG-positive disease was seen, patients underwent biopsy; if the biopsy was negative, they also received three cycles of ICE. Patients with a positive biopsy received ICE followed by autologous stem-cell transplantation. RESULTS At a median follow-up of 44 months, overall and progression-free survival were 90% and 79%, respectively. Ninety-seven patients underwent interim FDG-PET scans; 59 had a negative scan, 51 of whom are progression free. Thirty-eight patients with FDG-PET-positive disease underwent repeat biopsy; 33 were negative, and 26 remain progression free after ICE consolidation therapy. Progression-free survival of interim FDG-PET-positive/biopsy-negative patients was identical to that in patients with a negative interim FDG-PET scan (P = .27). CONCLUSION Interim or post-treatment FDG-PET evaluation did not predict outcome with this dose-dense, sequential immunochemotherapy program. Outside of a clinical trial, we recommend biopsy confirmation of an abnormal interim FDG-PET scan before changing therapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Fluordesoxiglucose F18 , Linfoma Difuso de Grandes Células B/diagnóstico por imagem , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Adolescente , Adulto , Idoso , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais Murinos , Ciclofosfamida/administração & dosagem , Relação Dose-Resposta a Droga , Doxorrubicina/administração & dosagem , Feminino , Humanos , Linfoma Difuso de Grandes Células B/imunologia , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prednisona/administração & dosagem , Estudos Prospectivos , Fatores de Risco , Rituximab , Taxa de Sobrevida , Resultado do Tratamento , Vincristina/administração & dosagem , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA