Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
N Engl J Med ; 386(9): 861-868, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35235727

RESUMO

Melioidosis, caused by the bacterium Burkholderia pseudomallei, is an uncommon infection that is typically associated with exposure to soil and water in tropical and subtropical environments. It is rarely diagnosed in the continental United States. Patients with melioidosis in the United States commonly report travel to regions where melioidosis is endemic. We report a cluster of four non-travel-associated cases of melioidosis in Georgia, Kansas, Minnesota, and Texas. These cases were caused by the same strain of B. pseudomallei that was linked to an aromatherapy spray product imported from a melioidosis-endemic area.


Assuntos
Aromaterapia/efeitos adversos , Burkholderia pseudomallei/isolamento & purificação , Surtos de Doenças , Melioidose/epidemiologia , Aerossóis , Encéfalo/microbiologia , Encéfalo/patologia , Burkholderia pseudomallei/genética , COVID-19/complicações , Pré-Escolar , Evolução Fatal , Feminino , Genoma Bacteriano , Humanos , Pulmão/microbiologia , Pulmão/patologia , Masculino , Melioidose/complicações , Pessoa de Meia-Idade , Filogenia , Choque Séptico/microbiologia , Estados Unidos/epidemiologia
2.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34607957

RESUMO

Morbidity and mortality rates from seasonal and pandemic influenza occur disproportionately in high-risk groups, including Indigenous people globally. Although vaccination against influenza is recommended for those most at risk, studies on immune responses elicited by seasonal vaccines in Indigenous populations are largely missing, with no data available for Indigenous Australians and only one report published on antibody responses in Indigenous Canadians. We recruited 78 Indigenous and 84 non-Indigenous Australians vaccinated with the quadrivalent influenza vaccine into the Looking into InFluenza T cell immunity - Vaccination cohort study and collected blood to define baseline, early (day 7), and memory (day 28) immune responses. We performed in-depth analyses of T and B cell activation, formation of memory B cells, and antibody profiles and investigated host factors that could contribute to vaccine responses. We found activation profiles of circulating T follicular helper type-1 cells at the early stage correlated strongly with the total change in antibody titers induced by vaccination. Formation of influenza-specific hemagglutinin-binding memory B cells was significantly higher in seroconverters compared with nonseroconverters. In-depth antibody characterization revealed a reduction in immunoglobulin G3 before and after vaccination in the Indigenous Australian population, potentially linked to the increased frequency of the G3m21* allotype. Overall, our data provide evidence that Indigenous populations elicit robust, broad, and prototypical immune responses following immunization with seasonal inactivated influenza vaccines. Our work strongly supports the recommendation of influenza vaccination to protect Indigenous populations from severe seasonal influenza virus infections and their subsequent complications.


Assuntos
Anticorpos Antivirais/sangue , Povos Indígenas/estatística & dados numéricos , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Ativação Linfocitária/imunologia , Austrália , Linfócitos B/imunologia , Humanos , Imunoglobulina G/sangue , Memória Imunológica/imunologia , Influenza Humana/imunologia , Influenza Humana/virologia , Contagem de Linfócitos , Vacinação em Massa , Risco , Células T Auxiliares Foliculares/imunologia , Linfócitos T/imunologia
3.
Antimicrob Agents Chemother ; 67(6): e0017123, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37133377

RESUMO

Cefiderocol is a siderophore cephalosporin designed mainly for treatment of infections caused by ß-lactam and multidrug-resistant Gram-negative bacteria. Burkholderia pseudomallei clinical isolates are usually highly cefiderocol susceptible, with in vitro resistance found in a few isolates. Resistance in clinical B. pseudomallei isolates from Australia is caused by a hitherto uncharacterized mechanism. We show that, like in other Gram-negatives, the PiuA outer membrane receptor plays a major role in cefiderocol nonsusceptibility in isolates from Malaysia.


Assuntos
Antibacterianos , Burkholderia pseudomallei , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias Gram-Negativas , Cefalosporinas/farmacologia , Cefalosporinas/uso terapêutico , Farmacorresistência Bacteriana Múltipla/genética , Testes de Sensibilidade Microbiana , Cefiderocol
4.
Clin Infect Dis ; 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35137005

RESUMO

BACKGROUND: The autotransporter protein Burkholderia intracellular motility A (BimA) facilitates the entry of Burkholderia pseudomallei into the central nervous system (CNS) in mouse models of melioidosis. Its role in the pathogenesis of human cases of CNS melioidosis is incompletely defined. METHODS: Consecutive culture-confirmed cases of melioidosis at two sites in tropical Australia after 1989 were reviewed. Demographic, clinical and radiological data of the patients with CNS melioidosis were recorded. The bimA allele (bimABm or bimABp) of the B. pseudomallei isolated from each patient was determined. RESULTS: Of the 1587 cases diagnosed at the two sites during the study period, 52 (3.3%) had confirmed CNS melioidosis; 20 (38.5%) had a brain abscess, 18 (34.6%) had encephalomyelitis, 4 (7.7%) had isolated meningitis and 10 (19.2%) had extra-meningeal disease. Among the 52 patients, there were 8 (15.4%) deaths; 17/44 (38.6%) survivors had residual disability. The bimA allele was characterized in 47/52; 17/47 (36.2%) had the bimABm allele and 30 (63.8%) had the bimABp allele. Patients with a bimABm variant were more likely to have a predominantly neurological presentation (odds ratio (OR) (95% confidence interval (CI)): 5.60 (1.52-20.61), p=0.01), to have brainstem involvement (OR (95%CI): 7.33 (1.92-27.95), p=0.004) and to have encephalomyelitis (OR (95%CI): 4.69 (1.30-16.95), p=0.02. Patients with a bimABm variant were more likely to die or have residual disability (odds ratio (95%CI): 4.88 (1.28-18.57), p=0.01). CONCLUSIONS: The bimA allele of B. pseudomallei has a significant impact on the clinical presentation and outcome of patients with CNS melioidosis.

5.
J Clin Microbiol ; 60(3): e0164821, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35080450

RESUMO

Each case of melioidosis results from a single event when a human is infected by the environmental bacterium Burkholderia pseudomallei. Darwin, in tropical northern Australia, has the highest incidences of melioidosis globally, and the Darwin Prospective Melioidosis Study (DPMS) commenced in 1989, documenting all culture-confirmed melioidosis cases. From 2000 to 2019, we sampled DPMS patients' environments for B. pseudomallei when a specific location was considered to be where infection occurred, with the aim of using genomic epidemiology to understand B. pseudomallei transmission and infecting scenarios. Environmental sampling was performed at 98 DPMS patient sites, where we collected 975 environmental samples (742 soil and 233 water). Genotyping matched the clinical and epidemiologically linked environmental B. pseudomallei for 19 patients (19%), with the environmental isolates cultured from soil (n = 11) and water (n = 8) sources. B. pseudomallei isolates from patients and their local environments that matched on genotyping were subjected to whole-genome sequencing (WGS). Of the 19 patients with a clinical-environmental genotype match, 17 pairs clustered on a Darwin core genome single-nucleotide polymorphism (SNP) phylogeny, later confirmed by single sequence typing (ST) phylogenies and pairwise comparative genomics. When related back to patient clinical scenarios, the matched clinical and environmental B. pseudomallei pairs informed likely modes of infection: percutaneous inoculation, inhalation, and ingestion. Targeted environmental sampling for B. pseudomallei can inform infecting scenarios for melioidosis and dangerous occupational and recreational activities and identify hot spots of B. pseudomallei presence. However, WGS and careful genomics are required to avoid overcalling the relatedness between clinical and environmental isolates of B. pseudomallei.


Assuntos
Burkholderia pseudomallei , Melioidose , Austrália/epidemiologia , Genômica/métodos , Humanos , Melioidose/epidemiologia , Melioidose/microbiologia , Estudos Prospectivos , Solo , Água
6.
Cell Mol Life Sci ; 79(1): 38, 2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-34971427

RESUMO

Bacteria that occupy an intracellular niche can evade extracellular host immune responses and antimicrobial molecules. In addition to classic intracellular pathogens, other bacteria including uropathogenic Escherichia coli (UPEC) can adopt both extracellular and intracellular lifestyles. UPEC intracellular survival and replication complicates treatment, as many therapeutic molecules do not effectively reach all components of the infection cycle. In this study, we explored cell-penetrating antimicrobial peptides from distinct structural classes as alternative molecules for targeting bacteria. We identified two ß-hairpin peptides from the horseshoe crab, tachyplesin I and polyphemusin I, with broad antimicrobial activity toward a panel of pathogenic and non-pathogenic bacteria in planktonic form. Peptide analogs [I11A]tachyplesin I and [I11S]tachyplesin I maintained activity toward bacteria, but were less toxic to mammalian cells than native tachyplesin I. This important increase in therapeutic window allowed treatment with higher concentrations of [I11A]tachyplesin I and [I11S]tachyplesin I, to significantly reduce intramacrophage survival of UPEC in an in vitro infection model. Mechanistic studies using bacterial cells, model membranes and cell membrane extracts, suggest that tachyplesin I and polyphemusin I peptides kill UPEC by selectively binding and disrupting bacterial cell membranes. Moreover, treatment of UPEC with sublethal peptide concentrations increased zinc toxicity and enhanced innate macrophage antimicrobial pathways. In summary, our combined data show that cell-penetrating peptides are attractive alternatives to traditional small molecule antibiotics for treating UPEC infection, and that optimization of native peptide sequences can deliver effective antimicrobials for targeting bacteria in extracellular and intracellular environments.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/farmacologia , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Proteínas de Ligação a DNA/farmacologia , Peptídeos Cíclicos/farmacologia , Animais , Células da Medula Óssea , Membrana Celular/efeitos dos fármacos , Células Cultivadas , Eritrócitos , Caranguejos Ferradura/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Cultura Primária de Células
7.
Emerg Infect Dis ; 27(4): 1057-1067, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33754984

RESUMO

Since 2005, the range of Burkholderia pseudomallei sequence type 562 (ST562) has expanded in northern Australia. During 2005-2019, ST562 caused melioidosis in 61 humans and 3 animals. Cases initially occurred in suburbs surrounding a creek before spreading across urban Darwin, Australia and a nearby island community. In urban Darwin, ST562 caused 12% (53/440) of melioidosis cases, a proportion that increased during the study period. We analyzed 2 clusters of cases with epidemiologic links and used genomic analysis to identify previously unassociated cases. We found that ST562 isolates from Hainan Province, China, and Pingtung County, Taiwan, were distantly related to ST562 strains from Australia. Temporal genomic analysis suggested a single ST562 introduction into the Darwin region in ≈1988. The origin and transmission mode of ST562 into Australia remain uncertain.


Assuntos
Burkholderia pseudomallei , Melioidose , Animais , Austrália , China , Variação Genética , Humanos , Filogenia , Taiwan
8.
Artigo em Inglês | MEDLINE | ID: mdl-33318011

RESUMO

Burkholderia ubonensis, a nonpathogenic soil bacterium belonging to the Burkholderia cepacia complex (Bcc), is highly resistant to some clinically significant antibiotics. The concern is that B. ubonensis may serve as a resistance reservoir for Bcc or B. pseudomallei complex (Bpc) organisms that are opportunistic human pathogens. Using a B. ubonensis strain highly resistant to tetracycline (MIC, ≥256 µg/ml), we identified and characterized tetA(64) that encodes a novel tetracycline-specific efflux pump of the major facilitator superfamily. TetA(64) and associated TetR(64) regulator expression are induced by tetracyclines. Although TetA(64) is the primary tetracycline and doxycycline resistance determinant, maximum tetracycline and doxycycline resistance requires synergy between TetA(64) and the nonspecific AmrAB-OprA resistance nodulation cell division efflux pump. TetA(64) does not efflux minocycline, tigecycline, and eravacycline. Comprehensive screening of genome sequences showed that TetA(64) is unequally distributed in the Bcc and absent from the Bpc. It is present in some major cystic fibrosis pathogens, like Burkholderia cenocepacia, but absent from others like Burkholderia multivorans The tetR(64)-tetA(64) genes are located in a region of chromosome 1 that is highly conserved in Burkholderia sp. Because there is no evidence for transposition, the tetR(64)-tetA(64) genes may have been acquired by homologous recombination after horizontal gene transfer. Although Burkholderia species contain a resident multicomponent efflux pump that allows them to respond to tetracyclines up to a certain concentration, the acquisition of the single-component TetA(64) by some species likely provides the synergy that these bacteria need to defend against high tetracycline concentrations in niche environments.


Assuntos
Complexo Burkholderia cepacia , Tetraciclina , Antibacterianos/farmacologia , Burkholderia , Complexo Burkholderia cepacia/genética , Humanos , Tetraciclina/farmacologia , Resistência a Tetraciclina/genética
9.
Antimicrob Agents Chemother ; 65(9): e0092021, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34181473

RESUMO

Burkholderia cepacia complex (Bcc) and Burkholderia pseudomallei complex (Bpc) species include pathogens that are typically multidrug resistant. Dominant intrinsic and acquired multidrug resistance mechanisms are efflux mediated by pumps of the resistance-nodulation-cell division (RND) family. From comparative bioinformatic and, in many instances, functional studies, we infer that RND pump-based resistance mechanisms are conserved in Burkholderia. We propose to use these findings as a foundation for adoption of a uniform RND efflux pump nomenclature.


Assuntos
Complexo Burkholderia cepacia , Burkholderia pseudomallei , Antibacterianos/farmacologia , Complexo Burkholderia cepacia/genética , Burkholderia pseudomallei/genética , Divisão Celular , Resistência Microbiana a Medicamentos , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana
10.
Appl Environ Microbiol ; 87(4)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33257313

RESUMO

Melioidosis is a disease of significant public health importance that is being increasingly recognized globally. The majority of cases arise through direct percutaneous exposure to its etiological agent, Burkholderia pseudomallei In the Lao People's Democratic Republic (Laos), the presence and environmental distribution of B. pseudomallei are not well characterized, though recent epidemiological surveys of the bacterium have indicated that B. pseudomallei is widespread throughout the environment in the center and south of the country and that rivers can act as carriers and potential sentinels for the bacterium. The spatial and genetic distribution of B. pseudomallei within Vientiane Capital, from where the majority of cases diagnosed to date have originated, remains an important knowledge gap. We sampled surface runoff from drain catchment areas throughout urban Vientiane to determine the presence and local population structure of the bacterium. B. pseudomallei was detected in drainage areas throughout the capital, indicating it is widespread in the environment and that exposure rates in urban Vientiane are likely more frequent than previously thought. Whole-genome comparative analysis demonstrated that Lao B. pseudomallei isolates are highly genetically diverse, suggesting the bacterium is well-established and not a recent introduction. Despite the wide genome diversity, one environmental survey isolate was highly genetically related to a Lao melioidosis patient isolate collected 13 years prior to the study. Knowledge gained from this study will augment understanding of B. pseudomallei phylogeography in Asia and enhance public health awareness and future implementation of infection control measures within Laos.IMPORTANCE The environmental bacterium B. pseudomallei is the etiological agent of melioidosis, a tropical disease with one model estimating a global annual incidence of 165,000 cases and 89,000 deaths. In the Lao People's Democratic Republic (Laos), the environmental distribution and population structure of B. pseudomallei remain relatively undefined, particularly in Vientiane Capital from where most diagnosed cases have originated. We used surface runoff as a proxy for B. pseudomallei dispersal in the environment and performed whole-genome sequencing (WGS) to examine the local population structure. Our data confirmed that B. pseudomallei is widespread throughout Vientiane and that surface runoff might be useful for future environmental monitoring of the bacterium. B. pseudomallei isolates were also highly genetically diverse, suggesting the bacterium is well-established and endemic in Laos. These findings can be used to improve awareness of B. pseudomallei in the Lao environment and demonstrates the epidemiological and phylogeographical insights that can be gained from WGS.

11.
BMC Vet Res ; 15(1): 458, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31856823

RESUMO

BACKGROUND: Melioidosis is a tropical infectious disease which is being increasingly recognised throughout the globe. Infection occurs in humans and animals, typically through direct exposure to soil or water containing the environmental bacterium Burkholderia pseudomallei. Case clusters of melioidosis have been described in humans following severe weather events and in exotic animals imported into melioidosis endemic zones. Direct transmission of B. pseudomallei between animals and/or humans has been documented but is considered extremely rare. Between March 2015 and October 2016 eight fatal cases of melioidosis were reported in slender-tailed meerkats (Suricata suricatta) on display at a Wildlife Park in Northern Australia. To further investigate the melioidosis case cluster we sampled the meerkat enclosure and adjacent park areas and performed whole-genome sequencing (WGS) on all culture-positive B. pseudomallei environmental and clinical isolates. RESULTS: WGS confirmed that the fatalities were caused by two different B. pseudomallei sequence types (STs) but that seven of the meerkat isolates were highly similar on the whole-genome level. Used concurrently with detailed pathology data, our results demonstrate that the seven cases originated from a single original source, but routes of infection varied amongst meerkats belonging to the clonal outbreak cluster. Moreover, in some instances direct transmission may have transpired through wounds inflicted while fighting. CONCLUSIONS: Collectively, this study supports the use of high-resolution WGS to enhance epidemiological investigations into transmission modalities and pathogenesis of melioidosis, especially in the instance of a possible clonal outbreak scenario in exotic zoological collections. Such findings from an animal outbreak have important One Health implications.


Assuntos
Burkholderia pseudomallei/genética , Herpestidae/microbiologia , Melioidose/veterinária , Animais , Animais de Zoológico , Austrália , Surtos de Doenças/veterinária , Microbiologia Ambiental , Feminino , Masculino , Melioidose/mortalidade , Melioidose/patologia , Melioidose/transmissão , Sequenciamento Completo do Genoma
12.
Clin Infect Dis ; 67(2): 243-250, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29394337

RESUMO

Background: Burkholderia pseudomallei, the causative agent of the high-mortality disease melioidosis, is a gram-negative bacterium that is naturally resistant to many antibiotics. There is no vaccine for melioidosis, and effective eradication is reliant on biphasic and prolonged antibiotic administration. The carbapenem drug meropenem is the current gold standard option for treating severe melioidosis. Intrinsic B. pseudomallei resistance toward meropenem has not yet been documented; however, resistance could conceivably develop over the course of infection, leading to prolonged sepsis and treatment failure. Methods: We examined our 30-year clinical collection of melioidosis cases to identify B. pseudomallei isolates with reduced meropenem susceptibility. Isolates were subjected to minimum inhibitory concentration (MIC) testing toward meropenem. Paired isolates from patients who had evolved decreased susceptibility were subjected to whole-genome sequencing. Select agent-compliant genetic manipulation was carried out to confirm the molecular mechanisms conferring resistance. Results: We identified 11 melioidosis cases where B. pseudomallei isolates developed decreased susceptibility toward meropenem during treatment, including 2 cases not treated with this antibiotic. Meropenem MICs increased from 0.5-0.75 µg/mL to 3-8 µg/mL. Comparative genomics identified multiple mutations affecting multidrug resistance-nodulation-division (RND) efflux pump regulators, with concomitant overexpression of their corresponding pumps. All cases were refractory to treatment despite aggressive, targeted therapy, and 2 were associated with a fatal outcome. Conclusions: This study confirms the role of RND efflux pumps in decreased meropenem susceptibility in B. pseudomallei. These findings have important ramifications for the diagnosis, treatment, and management of life-threatening melioidosis cases.


Assuntos
Antibacterianos/farmacologia , Burkholderia pseudomallei/efeitos dos fármacos , Farmacorresistência Bacteriana , Proteínas de Membrana Transportadoras/genética , Meropeném/farmacologia , Austrália , Proteínas de Bactérias/genética , Burkholderia pseudomallei/genética , Regulação da Expressão Gênica , Genômica , Humanos , Melioidose/microbiologia , Melioidose/mortalidade , Testes de Sensibilidade Microbiana , Mutação
13.
Artigo em Inglês | MEDLINE | ID: mdl-28348161

RESUMO

The soil-dwelling bacterium Burkholderia pseudomallei is the causative agent of the potentially fatal disease melioidosis. The lack of a vaccine toward B. pseudomallei means that melioidosis treatment relies on prolonged antibiotic therapy, which can last up to 6 months in duration or longer. Due to intrinsic resistance, few antibiotics are effective against B. pseudomallei The lengthy treatment regimen required increases the likelihood of resistance development, with subsequent potentially fatal relapse. Doxycycline (DOX) has historically played an important role in the eradication phase of melioidosis treatment. Both primary and acquired DOX resistances have been documented in B. pseudomallei; however, the molecular mechanisms underpinning DOX resistance have remained elusive. Here, we identify and functionally characterize the molecular mechanisms conferring acquired DOX resistance in an isogenic B. pseudomallei pair. Two synergistic mechanisms were identified. The first mutation occurred in a putative S-adenosyl-l-methionine-dependent methyltransferase (encoded by BPSL3085), which we propose leads to altered ribosomal methylation, thereby decreasing DOX binding efficiency. The second mutation altered the function of the efflux pump repressor gene, amrR, resulting in increased expression of the resistance-nodulation-division efflux pump, AmrAB-OprA. Our findings highlight the diverse mechanisms by which B. pseudomallei can become resistant to antibiotics used in melioidosis therapy and the need for resistance monitoring during treatment regimens, especially in patients with prolonged or recrudesced positive cultures for B. pseudomallei.


Assuntos
Antibacterianos/farmacologia , Doxiciclina/farmacologia , Burkholderia pseudomallei/efeitos dos fármacos , Burkholderia pseudomallei/genética , Metiltransferases/genética , Testes de Sensibilidade Microbiana , Mutação/genética
15.
PLoS Negl Trop Dis ; 18(5): e0012195, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38805481

RESUMO

Melioidosis is a bacterial infection caused by Burkholderia pseudomallei, that is common in tropical and subtropical countries including Southeast Asia and Northern Australia. The magnitude of undiagnosed and untreated melioidosis across the country remains unclear. Given its proximity to regions with high infection rates, Riau Province on Sumatera Island is anticipated to have endemic melioidosis. This study reports retrospectively collected data on 68 culture-confirmed melioidosis cases from two hospitals in Riau Province between January 1, 2009, and December 31, 2021, with full clinical data available on 41 cases. We also describe whole genome sequencing and genotypic analysis of six isolates of B. pseudomallei. The mean age of the melioidosis patients was 49.1 (SD 11.5) years, 85% were male and the most common risk factor was diabetes mellitus (78%). Pulmonary infection was the most common presentation (39%), and overall mortality was 41%. Lung as a focal infection (aOR: 6.43; 95% CI: 1.13-36.59, p = 0.036) and bacteremia (aOR: 15.21; 95% CI: 2.59-89.31, p = 0.003) were significantly associated with death. Multilocus sequence typing analysis conducted on six B.pseudomallei genomes identified three sequence types (STs), namely novel ST1794 (n = 3), ST46 (n = 2), and ST289 (n = 1). A phylogenetic tree of Riau B. pseudomallei whole genome sequences with a global dataset of genomes clearly distinguished the genomes of B. pseudomallei in Indonesia from the ancestral Australian clade and classified them within the Asian clade. This study expands the known presence of B. pseudomallei within Indonesia and confirms that Indonesian B. pseudomallei are genetically linked to those in the rest of Southeast Asia. It is anticipated that melioidosis will be found in other locations across Indonesia as laboratory capacities improve and standardized protocols for detecting and confirming suspected cases of melioidosis are more widely implemented.


Assuntos
Burkholderia pseudomallei , Variação Genética , Melioidose , Sequenciamento Completo do Genoma , Humanos , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/classificação , Burkholderia pseudomallei/isolamento & purificação , Melioidose/epidemiologia , Melioidose/microbiologia , Masculino , Pessoa de Meia-Idade , Feminino , Indonésia/epidemiologia , Adulto , Estudos Retrospectivos , Filogenia , Genótipo , Idoso , Fatores de Risco
16.
Int J Antimicrob Agents ; 61(3): 106714, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36640845

RESUMO

Burkholderia pseudomallei is a soil- and water-dwelling Gram-negative bacterium that causes melioidosis in humans and animals. Amoxicillin-clavulanic acid (AMC) susceptibility has been hailed as an integral part of the screening algorithm for identification of B. pseudomallei, but the molecular basis for the inherent AMC susceptibility of this bacterium remains undefined. This study showed that B. pseudomallei (and the closely-related B. mallei) wild-type strains are the only Burkholderia spp. that contain a 70STSK73 PenA Ambler motif. This motif was present in >99.5% of 1820 analysed B. pseudomallei strains and 100% of 83 analysed B. mallei strains, and is proposed as the likely cause for their inherent AMC sensitivity. The authors developed a polymerase chain reaction (PCR) assay that specifically amplifies the penA70ST(S/F)K73-containing region from B. pseudomallei and B. mallei, but not from the remaining B. pseudomallei complex species or the 70STFK73 region from the closely-related penB of B. cepacia complex species. The abundance and purity of the 193-bp PCR fragment from putative B. pseudomallei isolates from clinical and environmental samples is likely sufficient for reliable confirmation of the presence of B. pseudomallei. The PCR assay is designed to be especially suited for use in resource-constrained areas. While not further explored in this study, the assay may allow diagnosis of putative B. mallei in culture isolates from animal and human samples.


Assuntos
Burkholderia mallei , Burkholderia pseudomallei , Melioidose , Animais , Humanos , Burkholderia mallei/genética , Burkholderia pseudomallei/genética , Melioidose/diagnóstico , Melioidose/microbiologia , Combinação Amoxicilina e Clavulanato de Potássio/farmacologia , beta-Lactamases , Domínio Catalítico , Reação em Cadeia da Polimerase
17.
Open Forum Infect Dis ; 10(8): ofad405, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37577114

RESUMO

Burkholderia pseudomallei, the causative agent of melioidosis, has not yet been reported in Timor-Leste, a sovereign state northwest of Australia. In the context of improved access to diagnostic resources and expanding clinical networks in the Australasian region, we report the first 3 cases of culture-confirmed melioidosis in Timor-Leste. These cases describe a broad range of typical presentations, including sepsis, pneumonia, multifocal abscesses, and cutaneous infection. Phylogenetic analysis revealed that the Timor-Leste isolates belong to the Australasian clade of B. pseudomallei, rather than the Asian clade, consistent with the phylogeographic separation across the Wallace Line. This study underscores an urgent need to increase awareness of this pathogen in Timor-Leste and establish diagnostic laboratories with improved culture capacity in regional hospitals. Clinical suspicion should prompt appropriate sampling and communication with laboratory staff to target diagnostic testing. Local antimicrobial guidelines have recently been revised to include recommendations for empiric treatment of severe sepsis.

18.
PLoS Negl Trop Dis ; 16(6): e0010486, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35696415

RESUMO

Melioidosis is endemic in the remote Katherine region of northern Australia. In a population with high rates of chronic disease, social inequities, and extreme remoteness, the impact of melioidosis is exacerbated by severe weather events and disproportionately affects First Nations Australians. All culture-confirmed melioidosis cases in the Katherine region of the Australian Top End between 1989-2021 were included in the study, and the clinical features and epidemiology were described. The diversity of Burkholderia pseudomallei strains in the region was investigated using genomic sequencing. From 1989-2021 there were 128 patients with melioidosis in the Katherine region. 96/128 (75%) patients were First Nations Australians, 72/128 (56%) were from a very remote region, 68/128 (53%) had diabetes, 57/128 (44%) had a history of hazardous alcohol consumption, and 11/128 (9%) died from melioidosis. There were 9 melioidosis cases attributable to the flooding of the Katherine River in January 1998; 7/9 flood-associated cases had cutaneous melioidosis, five of whom recalled an inoculating event injury sustained wading through flood waters or cleaning up after the flood. The 126 first-episode clinical B. pseudomallei isolates that underwent genomic sequencing belonged to 107 different sequence types and were highly diverse, reflecting the vast geographic area of the study region. In conclusion, melioidosis in the Katherine region disproportionately affects First Nations Australians with risk factors and is exacerbated by severe weather events. Diabetes management, public health intervention for hazardous alcohol consumption, provision of housing to address homelessness, and patient education on melioidosis prevention in First Nations languages should be prioritised.


Assuntos
Burkholderia pseudomallei , Melioidose , Austrália/epidemiologia , Burkholderia pseudomallei/genética , Humanos , Melioidose/epidemiologia , Fatores de Risco
19.
EBioMedicine ; 63: 103152, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33285499

RESUMO

BACKGROUND: Antimicrobial resistance (AMR) poses a major threat to human health. Whole-genome sequencing holds great potential for AMR identification; however, there remain major gaps in accurately and comprehensively detecting AMR across the spectrum of AMR-conferring determinants and pathogens. METHODS: Using 16 wild-type Burkholderia pseudomallei and 25 with acquired AMR, we first assessed the performance of existing AMR software (ARIBA, CARD, ResFinder, and AMRFinderPlus) for detecting clinically relevant AMR in this pathogen. B. pseudomallei was chosen due to limited treatment options, high fatality rate, and AMR caused exclusively by chromosomal mutation (i.e. single-nucleotide polymorphisms [SNPs], insertions-deletions [indels], copy-number variations [CNVs], inversions, and functional gene loss). Due to poor performance with existing tools, we developed ARDaP (Antimicrobial Resistance Detection and Prediction) to identify the spectrum of AMR-conferring determinants in B. pseudomallei. FINDINGS: CARD, ResFinder, and AMRFinderPlus failed to identify any clinically-relevant AMR in B. pseudomallei; ARIBA identified AMR encoded by SNPs and indels that were manually added to its database. However, none of these tools identified CNV, inversion, or gene loss determinants, and ARIBA could not differentiate AMR determinants from natural genetic variation. In contrast, ARDaP accurately detected all SNP, indel, CNV, inversion, and gene loss AMR determinants described in B. pseudomallei (n≈50). Additionally, ARDaP accurately predicted three previously undescribed determinants. In mixed strain data, ARDaP identified AMR to as low as ~5% allelic frequency. INTERPRETATION: Existing AMR software packages are inadequate for chromosomal AMR detection due to an inability to detect resistance conferred by CNVs, inversions, and functional gene loss. ARDaP overcomes these major shortcomings. Further, ARDaP enables AMR prediction from mixed sequence data down to 5% allelic frequency, and can differentiate natural genetic variation from AMR determinants. ARDaP databases can be constructed for any microbial species of interest for comprehensive AMR detection. FUNDING: National Health and Medical Research Council (BJC, EPP, DSS); Australian Government (DEM, ES); Advance Queensland (EPP, DSS).


Assuntos
Burkholderia pseudomallei/efeitos dos fármacos , Melioidose/microbiologia , Antibacterianos/farmacologia , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/isolamento & purificação , Biologia Computacional/métodos , Farmacorresistência Bacteriana , Genes Bacterianos , Genoma Bacteriano , Genômica/métodos , Humanos , Melioidose/tratamento farmacológico , Testes de Sensibilidade Microbiana , Mutação , Análise de Sequência de DNA , Sequenciamento Completo do Genoma
20.
Artigo em Inglês | MEDLINE | ID: mdl-35036991

RESUMO

Interstitial cystitis/bladder pain syndrome (IC/BPS) is defined as an unpleasant sensation perceived to be related to the bladder with associated urinary symptoms. Due to difficulties discriminating pelvic visceral sensation, IC/BPS likely represents multiple phenotypes with different etiologies that present with overlapping symptomatic manifestations, which complicates clinical management. We hypothesized that unique bladder pain phenotypes or "symptomatic clusters" would be identifiable using machine learning analysis (unsupervised clustering) of validated patient-reported urinary and pain measures. Patients (n = 145) with pelvic pain/discomfort perceived to originate in the bladder and lower urinary tract symptoms answered validated questionnaires [OAB Questionnaire (OAB-q), O'Leary-Sant Indices (ICSI/ICPI), female Genitourinary Pain Index (fGUPI), and Pelvic Floor Disability Index (PFDI)]. In comparison to asymptomatic controls (n = 69), machine learning revealed three bladder pain phenotypes with unique, salient features. The first group chiefly describes urinary frequency and pain with the voiding cycle, in which bladder filling causes pain relieved by bladder emptying. The second group has fluctuating pelvic discomfort and straining to void, urinary frequency and urgency without incontinence, and a sensation of incomplete emptying without urinary retention. Pain in the third group was not associated with voiding, instead being more constant and focused on the urethra and vagina. While not utilized as a feature for clustering, subjects in the second and third groups were significantly younger than subjects in the first group and controls without pain. These phenotypes defined more homogeneous patient subgroups which responded to different therapies on chart review. Current approaches to the management of heterogenous populations of bladder pain patients are often ineffective, discouraging both patients and providers. The granularity of individual phenotypes provided by unsupervised clustering approaches can be exploited to help objectively define more homogeneous patient subgroups. Better differentiation of unique phenotypes within the larger group of pelvic pain patients is needed to move toward improvements in care and a better understanding of the etiologies of these painful symptoms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA