Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 237(5): 1495-1504, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36511294

RESUMO

Nonvascular photoautotrophs (NVP), including bryophytes, lichens, terrestrial algae, and cyanobacteria, are increasingly recognized as being essential to ecosystem functioning in many regions of the world. Current research suggests that climate change may pose a substantial threat to NVP, but the extent to which this will affect the associated ecosystem functions and services is highly uncertain. Here, we propose a research agenda to address this urgent question, focusing on physiological and ecological processes that link NVP to ecosystem functions while also taking into account the substantial taxonomic diversity across multiple ecosystem types. Accordingly, we developed a new categorization scheme, based on microclimatic gradients, which simplifies the high physiological and morphological diversity of NVP and world-wide distribution with respect to several broad habitat types. We found that habitat-specific ecosystem functions of NVP will likely be substantially affected by climate change, and more quantitative process understanding is required on: (1) potential for acclimation; (2) response to elevated CO2 ; (3) role of the microbiome; and (4) feedback to (micro)climate. We suggest an integrative approach of innovative, multimethod laboratory and field experiments and ecophysiological modelling, for which sustained scientific collaboration on NVP research will be essential.


Assuntos
Briófitas , Líquens , Ecossistema , Mudança Climática , Plantas , Briófitas/fisiologia , Líquens/fisiologia
2.
Int J Comput Dent ; 0(0): 0, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37350409

RESUMO

AIM: The digital workflow used to manufacture an adjusted oral splint will be demonstrated in a patient case. MATERIALS AND METHODS: A 25-year-old female patient presented for management of her bruxism. Therefore, an adjusted oral splint was manufactured. A computer-aided motion analysis of the patient was conducted (JMA Optic, Amann Girrbach) and full-arch scans of the maxilla and mandible, a biocopy of the maxilla with bite fork as well as buccal scans of the centric jaw relation (Primescan, Dentsply Sirona). The jaw relation was determined beforehand by ballistic closing on a chairside fabricated anterior jig. The digital construction of a Michigan splint took place in the laboratory. The design was nested and milled from a polymethyl methacrylate (PMMA)-containing blank (CLEARsplint Disc, Astron Dental Corporation). RESULT: The oral splint was inserted into the patient's mouth and checked to ensure a tensionfree fit. The static and dynamic contact relationship was checked. During the follow-up visit, the patient reported an improvement in tension in the masticatory muscles. CONCLUSION: The procedure described allows for an adjusted oral splint to be manufactured in a purely digital workflow.

3.
Environ Sci Technol ; 56(4): 2204-2212, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35104400

RESUMO

Nitrous acid (HONO) is an important component of the global nitrogen cycle and can regulate the atmospheric oxidative capacity. Soil is an important source of HONO. [HONO]*, the equilibrium gas-phase concentration over the aqueous solution of nitrous acid in the soil, has been suggested as a key parameter for quantifying soil fluxes of HONO. However, [HONO]* has not yet been well-validated and quantified. Here, we present a method to retrieve [HONO]* by conducting controlled dynamic chamber experiments with soil samples applied with different HONO concentrations at the chamber inlet. We show a bi-directional soil-atmosphere exchange of HONO and confirm the existence of [HONO]* over soil: when [HONO]* is higher than the atmospheric HONO concentration, HONO will be released from soil; otherwise, HONO will be deposited. We demonstrate that [HONO]* is a soil characteristic, which is independent of HONO concentrations in the chamber but varies with different soil water contents. We illustrate the robustness of using [HONO]* for quantifying soil fluxes of HONO, whereas the laboratory-determined chamber HONO fluxes can largely deviate from those in the real world for the same soil sample. This work advances the understanding of the soil-atmosphere exchange of HONO and the evaluation of its impact on the atmospheric oxidizing capacity.


Assuntos
Ácido Nitroso , Solo , Atmosfera , Ciclo do Nitrogênio , Microbiologia do Solo , Água
4.
Environ Sci Technol ; 56(16): 11865-11877, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35929951

RESUMO

Biocrusts covering drylands account for major fractions of terrestrial biological nitrogen fixation and release large amounts of gaseous reactive nitrogen (Nr) as nitrous acid (HONO) and nitric oxide (NO). Recent investigations suggested that aerobic and anaerobic microbial nitrogen transformations occur simultaneously upon desiccation of biocrusts, but the spatio-temporal distribution of seemingly contradictory processes remained unclear. Here, we explore small-scale gradients in chemical concentrations related to structural characteristics and organism distribution. X-ray microtomography and fluorescence microscopy revealed mixed pore size structures, where photoautotrophs and cyanobacterial polysaccharides clustered irregularly in the uppermost millimeter. Microsensor measurements showed strong gradients of pH, oxygen, and nitrite, nitrate, and ammonium ion concentrations at micrometer scales in both vertical and lateral directions. Initial oxygen saturation was mostly low (∼30%) at full water holding capacity, suggesting widely anoxic conditions, and increased rapidly upon desiccation. Nitrite concentrations (∼6 to 800 µM) and pH values (∼6.5 to 9.5) were highest around 70% WHC. During further desiccation they decreased, while emissions of HONO and NO increased, reaching maximum values around 20% WHC. Our results illustrate simultaneous, spatially separated aerobic and anaerobic nitrogen transformations, which are critical for Nr emissions, but might be impacted by future global change and land management.


Assuntos
Cianobactérias , Solo , Óxido Nítrico , Nitritos , Nitrogênio/análise , Ácido Nitroso/química , Óxido Nitroso/análise , Solo/química
5.
Glob Chang Biol ; 26(10): 6003-6014, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32729653

RESUMO

The capture and use of water are critically important in drylands, which collectively constitute Earth's largest biome. Drylands will likely experience lower and more unreliable rainfall as climatic conditions change over the next century. Dryland soils support a rich community of microphytic organisms (biocrusts), which are critically important because they regulate the delivery and retention of water. Yet despite their hydrological significance, a global synthesis of their effects on hydrology is lacking. We synthesized 2,997 observations from 109 publications to explore how biocrusts affected five hydrological processes (times to ponding and runoff, early [sorptivity] and final [infiltration] stages of water flow into soil, and the rate or volume of runoff) and two hydrological outcomes (moisture storage, sediment production). We found that increasing biocrust cover reduced the time for water to pond on the surface (-40%) and commence runoff (-33%), and reduced infiltration (-34%) and sediment production (-68%). Greater biocrust cover had no significant effect on sorptivity or runoff rate/amount, but increased moisture storage (+14%). Infiltration declined most (-56%) at fine scales, and moisture storage was greatest (+36%) at large scales. Effects of biocrust type (cyanobacteria, lichen, moss, mixed), soil texture (sand, loam, clay), and climatic zone (arid, semiarid, dry subhumid) were nuanced. Our synthesis provides novel insights into the magnitude, processes, and contexts of biocrust effects in drylands. This information is critical to improve our capacity to manage dwindling dryland water supplies as Earth becomes hotter and drier.


Assuntos
Briófitas , Água , Mudança Climática , Ecossistema , Solo , Microbiologia do Solo
6.
Proc Natl Acad Sci U S A ; 112(50): 15384-9, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26621714

RESUMO

Reactive nitrogen species have a strong influence on atmospheric chemistry and climate, tightly coupling the Earth's nitrogen cycle with microbial activity in the biosphere. Their sources, however, are not well constrained, especially in dryland regions accounting for a major fraction of the global land surface. Here, we show that biological soil crusts (biocrusts) are emitters of nitric oxide (NO) and nitrous acid (HONO). Largest fluxes are obtained by dark cyanobacteria-dominated biocrusts, being ∼20 times higher than those of neighboring uncrusted soils. Based on laboratory, field, and satellite measurement data, we obtain a best estimate of ∼1.7 Tg per year for the global emission of reactive nitrogen from biocrusts (1.1 Tg a(-1) of NO-N and 0.6 Tg a(-1) of HONO-N), corresponding to ∼20% of global nitrogen oxide emissions from soils under natural vegetation. On continental scales, emissions are highest in Africa and South America and lowest in Europe. Our results suggest that dryland emissions of reactive nitrogen are largely driven by biocrusts rather than the underlying soil. They help to explain enigmatic discrepancies between measurement and modeling approaches of global reactive nitrogen emissions. As the emissions of biocrusts strongly depend on precipitation events, climate change affecting the distribution and frequency of precipitation may have a strong impact on terrestrial emissions of reactive nitrogen and related climate feedback effects. Because biocrusts also account for a large fraction of global terrestrial biological nitrogen fixation, their impacts should be further quantified and included in regional and global models of air chemistry, biogeochemistry, and climate.


Assuntos
Ecossistema , Óxido Nítrico/análise , Ciclo do Nitrogênio , Ácido Nitroso/análise , Poluentes do Solo/análise , Solo/química , Cianobactérias/metabolismo
7.
Environ Sci Technol ; 51(23): 13545-13567, 2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29111690

RESUMO

Poor air quality is globally the largest environmental health risk. Epidemiological studies have uncovered clear relationships of gaseous pollutants and particulate matter (PM) with adverse health outcomes, including mortality by cardiovascular and respiratory diseases. Studies of health impacts by aerosols are highly multidisciplinary with a broad range of scales in space and time. We assess recent advances and future challenges regarding aerosol effects on health from molecular to global scales through epidemiological studies, field measurements, health-related properties of PM, and multiphase interactions of oxidants and PM upon respiratory deposition. Global modeling combined with epidemiological exposure-response functions indicates that ambient air pollution causes more than four million premature deaths per year. Epidemiological studies usually refer to PM mass concentrations, but some health effects may relate to specific constituents such as bioaerosols, polycyclic aromatic compounds, and transition metals. Various analytical techniques and cellular and molecular assays are applied to assess the redox activity of PM and the formation of reactive oxygen species. Multiphase chemical interactions of lung antioxidants with atmospheric pollutants are crucial to the mechanistic and molecular understanding of oxidative stress upon respiratory deposition. The role of distinct PM components in health impacts and mortality needs to be clarified by integrated research on various spatiotemporal scales for better evaluation and mitigation of aerosol effects on public health in the Anthropocene.


Assuntos
Aerossóis , Poluentes Atmosféricos , Estudos Epidemiológicos , Poluição do Ar , Material Particulado
8.
Environ Sci Technol ; 51(8): 4119-4141, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28326768

RESUMO

Air pollution and climate change are potential drivers for the increasing burden of allergic diseases. The molecular mechanisms by which air pollutants and climate parameters may influence allergic diseases, however, are complex and elusive. This article provides an overview of physical, chemical and biological interactions between air pollution, climate change, allergens, adjuvants and the immune system, addressing how these interactions may promote the development of allergies. We reviewed and synthesized key findings from atmospheric, climate, and biomedical research. The current state of knowledge, open questions, and future research perspectives are outlined and discussed. The Anthropocene, as the present era of globally pervasive anthropogenic influence on planet Earth and, thus, on the human environment, is characterized by a strong increase of carbon dioxide, ozone, nitrogen oxides, and combustion- or traffic-related particulate matter in the atmosphere. These environmental factors can enhance the abundance and induce chemical modifications of allergens, increase oxidative stress in the human body, and skew the immune system toward allergic reactions. In particular, air pollutants can act as adjuvants and alter the immunogenicity of allergenic proteins, while climate change affects the atmospheric abundance and human exposure to bioaerosols and aeroallergens. To fully understand and effectively mitigate the adverse effects of air pollution and climate change on allergic diseases, several challenges remain to be resolved. Among these are the identification and quantification of immunochemical reaction pathways involving allergens and adjuvants under relevant environmental and physiological conditions.


Assuntos
Alérgenos/imunologia , Mudança Climática , Poluentes Atmosféricos , Poluição do Ar , Humanos , Hipersensibilidade
9.
Glob Chang Biol ; 21(10): 3889-900, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26152454

RESUMO

Cryptogamic covers, which comprise some of the oldest forms of terrestrial life on Earth (Lenton & Huntingford, ), have recently been found to fix large amounts of nitrogen and carbon dioxide from the atmosphere (Elbert et al., ). Here we show that they are also greenhouse gas sources with large nitrous oxide (N2 O) and small methane (CH4 ) emissions. Whilst N2 O emission rates varied with temperature, humidity, and N deposition, an almost constant ratio with respect to respiratory CO2 emissions was observed for numerous lichens and bryophytes. We employed this ratio together with respiration data to calculate global and regional N2 O emissions. If our laboratory measurements are typical for lichens and bryophytes living on ground and plant surfaces and scaled on a global basis, we estimate a N2 O source strength of 0.32-0.59 Tg year(-1) for the global N2 O emissions from cryptogamic covers. Thus, our emission estimate might account for 4-9% of the global N2 O budget from natural terrestrial sources. In a wide range of arid and forested regions, cryptogamic covers appear to be the dominant source of N2 O. We suggest that greenhouse gas emissions associated with this source might increase in the course of global change due to higher temperatures and enhanced nitrogen deposition.


Assuntos
Poluentes Atmosféricos/análise , Efeito Estufa , Metano/análise , Óxido Nitroso/análise , Austrália , Briófitas/metabolismo , Cianobactérias/metabolismo , Monitoramento Ambiental , Europa (Continente) , Fungos/metabolismo , Líquens/metabolismo , Microalgas/metabolismo , Modelos Teóricos , Nova Zelândia
10.
Cell Physiol Biochem ; 33(5): 1452-66, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24854240

RESUMO

BACKGROUND/AIMS: Mechanical strain of the lung tissue is a physiological process that affects the behavior of lung cells. Since recent evidence also suggests alterations in the expression of certain genes as a consequence of mechanotransduction, our study aimed at the analysis of the gene expression profile in lung epithelial cells subjected to chronic cyclic strain. METHODS: Various human lung epithelial cell lines (A549 as principal adherent cell line and four others) were subjected to cyclic strain (16 % surface distension, 12 min(-1)) in a Strain Cell Culture Device for 24 h. In comparison to static controls, expression analyses were performed by gene microarray and qPCR. RESULTS: Microarray analysis revealed many differences in the gene expression but at moderate levels. Altogether 25 genes were moderately down-regulated (0.86-fold ± 0.06) and 26 genes were up-regulated (1.18-fold ± 0.10) in A549 and the others. Strain-regulated genes often code for transcription factors, such as E2F4 and SRF. qPCR analyses confirmed the up-regulation of both transcription factors and further genes, such as PLAU (urokinase-type plasminogen activator) and S100A4 (S100 protein A4). Moreover, we showed the down-regulations of AGR2 (anterior gradient 2) and LCN2 (lipocalin 2). CONCLUSIONS: We identified many genes of which the expression was moderately altered in lung epithelial cells subjected to chronic cyclic strain. Although many moderate changes in the gene expression profile might affect cellular behavior, it also suggests an effective adaptation of cells to mechanical forces in long-term conditions.


Assuntos
Adaptação Fisiológica/genética , Células Epiteliais/metabolismo , Perfilação da Expressão Gênica , Pulmão/citologia , Análise de Sequência com Séries de Oligonucleotídeos , Estresse Fisiológico/genética , Células Cultivadas , Humanos , Proteínas/genética , RNA Mensageiro/genética
11.
Microb Ecol ; 67(2): 286-301, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24141940

RESUMO

Biological soil crusts (BSCs) are communities of cryptogamic organisms, occurring in arid and semiarid regions all over the world. Based on both morphological identification and genetic analyses, we established a first cyanobacterial inventory using the biphasic approach for BSCs within two major biomes of southern Africa. The samples were collected at two different sites in the Succulent Karoo and one in the Nama Karoo. After cultivation and morphological identification, the 16S rRNA gene was sequenced from the cyanobacterial cultures. From the soil samples, the DNA was extracted, and the 16S rRNA gene sequenced. All the sequences of the clone libraries from soil and cultures were compared with those of the public databases. Forty-five different species were morphologically identified in the samples of the Succulent Karoo (observatories of Soebatsfontein and Goedehoop). Based on the genetic analyses, 60 operational taxonomic units (OTUs) were identified for the Succulent Karoo and 43 for the Nama Karoo (based on 95% sequence similarity). The cloned sequences corresponded well with the morphologically described taxa in cultures and sequences in the public databases. Besides known species of typical crust-forming cyanobacterial genera (Microcoleus, Phormidium, Tolypothrix and Scytonema), we found sequences of so far undescribed species of the genera Leptolyngbya, Pseudanabaena, Phormidium, Oscillatoria, Schizothrix and Microcoleus. Most OTUs were restricted to distinct sites. Grazed soils showed lower taxa numbers than undisturbed soils, implying the presence of early successional crust types and reduced soil surface protection. Our combined approach of morphological identification and genetic analyses allowed both a taxa inventory and the analysis of species occurring under specific habitat conditions.


Assuntos
Cianobactérias/classificação , Cianobactérias/isolamento & purificação , Genótipo , Fenótipo , Microbiologia do Solo , África Austral , Biodiversidade , Clonagem Molecular , Cianobactérias/genética , DNA Bacteriano/genética , Ecossistema , RNA Ribossômico 16S/genética
12.
Sci Total Environ ; 926: 171751, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38503391

RESUMO

Soil respiration, or CO2 efflux from soil, is a crucial component of the terrestrial carbon cycle in climate models. Contrastingly, many dryland soils absorb atmospheric CO2 at night, but the exact mechanisms driving this uptake are actively debated. Here we used a mechanistic model with heuristic approaches to unravel the underlying processes of the observed patterns of soil-atmosphere CO2 fluxes. We show that the temperature drop during nighttime is the main driver of CO2 uptake by increasing CO2 solubility and local water pH of a thin water film on soil particle surfaces, providing favourable conditions for carbonate precipitation. Our data demonstrate that the nocturnal inorganic carbon absorption is a common soil process, but often offset by biological CO2 production. The uptake rates can be impacted by different successional stages of biocrusts that consume or produce CO2 and modify the pH of the soil water film, which can be maintained by non-rainfall water inputs, such as pore space condensation. Annual estimates of nocturnal carbon uptake, based on in situ continuous measurements at the soil level in drylands are still very scarce, but fluxes of up to several tens of g C m-2 y-1 have been reported, potentially accounting for a considerable fraction of the global residual terrestrial carbon sink.

13.
Sci Total Environ ; 913: 169745, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38163611

RESUMO

During durst storms, also biological material is transported from arid areas such as the Sahara Desert. In the present work, rain samples containing significant amounts of mineral dust have been collected in Granada during different red rain episodes. Biological features (bacteria, biofilm, pollen grain and fungal spore) as well as size-particle distribution and mineralogical composition were studied by SEM. Nanobacteria were observed for the first time in red rain samples. A preliminary metabarcoding analysis was performed on three red rain samples. Here, Bacillota made up 18 % and Pseudomonadota 23 % of the whole prokaryotic community. The fungal community was characterized by a high abundance of Ascomycota and, dependent on the origin, the presence of Chytridiomycota. By means of 16S rRNA sequencing, 18 cultivable microorganisms were identified. In general, members of the phyla Pseudomonadota and Bacillota made up the majority of taxa. Some species, such as Peribacillus frigoritolerans and Bacillus halotolerans were isolated during three different red rain episodes. Generally, red rain carries a wide variety of microorganisms, being their ecosystem and health effects largely unknown.


Assuntos
Poeira , Ecossistema , Poeira/análise , Espanha , RNA Ribossômico 16S/genética , Chuva , África do Norte
14.
Sci Total Environ ; 944: 173918, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-38866151

RESUMO

Per- and polyfluoroalkyl substances (PFAS), often referred to as "forever chemicals", are a class of man-made, extremely stable chemicals, which are widely used in industrial and commercial applications. Exposure to some PFAS is now known to be detrimental to human health. By virtue of PFAS long residence times, they are widely detected in the environment, including remote locations such as the Arctics, where the origin of the PFAS is poorly understood. It has been suggested that PFAS may be transported through contaminated waters, leading to accumulation in coastal areas, where they can be aerosolised via sea spray, thereby extending their geographical distribution far beyond their original source regions. The aim of this work is to investigate, for the first time, whether "forever chemicals" could be transported to areas considered to be pristine, far from coastal sites. This study was performed at the Amazonian Tall Tower Observatory (ATTO), a unique remote site situated in the middle of the Amazon rainforest, where a restricted PFAS, perfluorooctanoic acid (PFOA), was observed with concentrations reaching up to 2 pg/m3. A clear trend of increasing concentration with sampling height was observed and air masses from the south over Manaus had the highest concentrations. Atmospheric lifetime estimations, removal mechanisms supported by measurements at two heights (320 and 42 m above the rainforest), and concentration spikes indicated a long-range transport of PFOA to pristine Amazon rainforest. Potential sources, including industrial activities in urban areas, were explored, and historical fire management practices considered. This research presents the first measurements of PFAS in the atmosphere of Amazon rainforest. Remarkably, even in this remote natural environment, appreciable levels of PFAS can be detected. This study provides valuable insights into the long-range transport of the anthropogenic "forever chemical" into a remote natural ecosystem and should raise awareness of potential environmental implications.


Assuntos
Poluentes Atmosféricos , Atmosfera , Monitoramento Ambiental , Fluorocarbonos , Poluentes Atmosféricos/análise , Fluorocarbonos/análise , Atmosfera/química , Brasil , Caprilatos/análise , Floresta Úmida
15.
Am J Physiol Lung Cell Mol Physiol ; 305(7): L491-500, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23997170

RESUMO

The receptor for advanced glycation end-products (RAGE) and its soluble forms are predominantly expressed in lung but its physiological importance in this organ is not yet fully understood. Since RAGE acts as a cell adhesion molecule, we postulated its physiological importance in the respiratory mechanics. Respiratory function in a buffer-perfused isolated lung system and biochemical parameters of the lung were studied in young, adult, and old RAGE knockout (RAGE-KO) mice and wild-type (WT) mice. Lungs from RAGE-KO mice showed a significant increase in the dynamic lung compliance and a decrease in the maximal expiratory air flow independent of age-related changes. We also determined lower mRNA and protein levels of elastin in lung tissue of RAGE-KO mice. RAGE deficiency did not influence the collagen protein level, lung capillary permeability, and inflammatory parameters (TNF-α, high-mobility group box protein 1) in lung. Overexpressing RAGE as well as soluble RAGE in lung fibroblasts or cocultured lung epithelial cells increased the mRNA expression of elastin. Moreover, immunoprecipitation studies indicated a trans interaction of RAGE in lung epithelial cells. Our findings suggest the physiological importance of RAGE and its soluble forms in supporting the respiratory mechanics in which RAGE trans interactions and the influence on elastin expression might play an important role.


Assuntos
Pulmão/fisiologia , Fluxo Expiratório Máximo/fisiologia , Receptores Imunológicos/metabolismo , Testes de Função Respiratória , Envelhecimento , Animais , Células Cultivadas , Colágeno/metabolismo , Elastina/genética , Elastina/metabolismo , Células Epiteliais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/genética , Fator de Necrose Tumoral alfa/metabolismo
16.
Planta ; 236(1): 129-39, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22278609

RESUMO

Biological soil crusts, formed by an association of soil particles with cyanobacteria, lichens, mosses, fungi and bacteria in varying proportions, live in or directly on top of the uppermost soil layer. To evaluate their role in the global carbon cycle, gas exchange measurements were conducted under controlled conditions. Moss-dominated soil crusts were first analyzed as moss tufts on soil, then the mosses were removed and the soil was analyzed separately to obtain the physiological response of both soil and individual moss stems. Net photosynthetic response of moss stems and complete crusts was decreased by insufficient and excess amounts of water, resulting in optimum curves with similar ranges of optimum water content. Light saturation of both sample types occurred at high irradiance, but moss stems reached light compensation and saturation points at lower values. Optimum temperatures of moss stems ranged between 22 and 27°C, whereas complete crusts reached similar net photosynthesis between 7 and 27°C. Under optimum conditions, moss stems reached higher net photosynthesis (4.0 vs. 2.8 µmol m(-2) s(-1)) and lower dark respiration rates (-0.9 vs. -2.4 µmol m(-2) s(-1)). Respiration rates of soil without moss stems were high (up to -2.0 µmol m(-2) s(-1)) causing by far lower absolute values of NP/DR ratios of soil crusts as compared to moss stems. In carbon balances, it therefore has to be clearly distinguished between measurements of soil crust components versus complete crusts. High rates of soil respiration may be caused by leaching of mosses, creating high-nutrient microsites that favor microorganism growth.


Assuntos
Bactérias/metabolismo , Briófitas/metabolismo , Ciclo do Carbono/fisiologia , Cianobactérias/metabolismo , Líquens/metabolismo , Microbiologia do Solo , Biodiversidade , Ecossistema , Luz , Fotossíntese , África do Sul , Temperatura
17.
Oecologia ; 169(3): 599-607, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22183705

RESUMO

Facilitative effects and plant-plant interactions are well known for higher plants, but there is a lack of information about their relevance in cryptogams. Additional information about facilitative effects between bryophytes and lichens would be an important contribution to recent research on positive plant-plant interactions, as these can have striking influences not only on the organisation of early successional terrestrial communities but also on succession dynamics by kick-starting ecosystem development through the import of key nutrients. We investigated and quantified these mechanisms between Peltigera rufescens and its associated mosses. Moss-associated thalli had a different morphology that led to several benefits from the association. They had 66% higher net photosynthetic rate and, because the majority of the gas exchange of lichen thalli took place through the lower surface, there was a further increase as the CO(2) concentration was >25% higher beneath moss-associated thalli. Microclimatic measurements showed that mean light levels were substantially lower and temperature extremes slightly ameliorated for moss-associated thalli. As a consequence, desiccation was slower which is, together with an increase in thallus thickness and water storage, the reason for extended periods of optimal net photosynthesis for the moss-associated thalli. All these benefits combined to produce a growth rate of the moss-associated thalli which was significantly higher, twice that of non-associated thalli [0.75 ± 0.4 vs. 0.30 ± 0.1 mm/month (mean ± SD)]. This appears to be the first demonstration of a strong mechanistic basis for facilitative effects between lichens and bryophytes.


Assuntos
Briófitas/fisiologia , Cianobactérias/fisiologia , Líquens/crescimento & desenvolvimento , Fotossíntese , Simbiose , Microclima
18.
Biol Rev Camb Philos Soc ; 97(5): 1768-1785, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35584903

RESUMO

Studies of biological soil crusts (biocrusts) have proliferated over the last few decades. The biocrust literature has broadened, with more studies assessing and describing the function of a variety of biocrust communities in a broad range of biomes and habitats and across a large spectrum of disciplines, and also by the incorporation of biocrusts into global perspectives and biogeochemical models. As the number of biocrust researchers increases, along with the scope of soil communities defined as 'biocrust', it is worth asking whether we all share a clear, universal, and fully articulated definition of what constitutes a biocrust. In this review, we synthesize the literature with the views of new and experienced biocrust researchers, to provide a refined and fully elaborated definition of biocrusts. In doing so, we illustrate the ecological relevance and ecosystem services provided by them. We demonstrate that biocrusts are defined by four distinct elements: physical structure, functional characteristics, habitat, and taxonomic composition. We describe outgroups, which have some, but not all, of the characteristics necessary to be fully consistent with our definition and thus would not be considered biocrusts. We also summarize the wide variety of different types of communities that fall under our definition of biocrusts, in the process of highlighting their global distribution. Finally, we suggest the universal use of the Belnap, Büdel & Lange definition, with minor modifications: Biological soil crusts (biocrusts) result from an intimate association between soil particles and differing proportions of photoautotrophic (e.g. cyanobacteria, algae, lichens, bryophytes) and heterotrophic (e.g. bacteria, fungi, archaea) organisms, which live within, or immediately on top of, the uppermost millimetres of soil. Soil particles are aggregated through the presence and activity of these often extremotolerant biota that desiccate regularly, and the resultant living crust covers the surface of the ground as a coherent layer. With this detailed definition of biocrusts, illustrating their ecological functions and widespread distribution, we hope to stimulate interest in biocrust research and inform various stakeholders (e.g. land managers, land users) on their overall importance to ecosystem and Earth system functioning.


Assuntos
Briófitas , Cianobactérias , Ecossistema , Solo/química , Microbiologia do Solo
19.
Endocrinol Diabetes Nutr (Engl Ed) ; 68(6): 381-388, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34742471

RESUMO

BACKGROUND: Inferior petrosal sinus sampling (IPSS) is indicated in the diagnosis of adrenocorticotropic hormone (ACTH)-dependent Cushing's syndrome (CS), especially when the results of the initial diagnostic tests are discordant. OBJECTIVE: To describe the patients who underwent this invasive functional test in a tertiary hospital. METHODS: This was an observational study of a retrospective cohort of patients with ACTH-dependent CS and IPSS between 2004 and 2019. We determined their epidemiological, hormonal, radiological and functional characteristics, and evaluated their diagnostic capacity and optimal cut-off points to differentiate between Cushing's disease (CD) and ectopic Cushing's syndrome (ECS). RESULTS: 23 patients were evaluated, of which 65.2% were women with the average age of 42 (36-62) years. ACTH secretion of pituitary origin was evident in 82.6% of the patients and of ectopic origin in 17.4%. Plasma cortisol, urinary free cortisol, and ACTH levels were higher in patients with ECS. Regarding IPSS, the baseline central/peripheral ACTH gradient detected 89.5% of patients with CD and after stimulation with CRH, 100%. The optimal cut-off points in the diagnosis of CD were 2.06 at baseline and 2.49 after CRH stimulation. CONCLUSION: IPSS with CRH stimulation is a test with a high diagnostic accuracy for correctly classifying patients with CD and ECS. The cut-off points of the gradients may be different from the classic ones. Therefore, we recommend that each center perform its own evaluation.


Assuntos
Hormônio Liberador da Corticotropina/uso terapêutico , Síndrome de Cushing , Amostragem do Seio Petroso , Hormônio Adrenocorticotrópico , Adulto , Síndrome de Cushing/diagnóstico , Feminino , Humanos , Hidrocortisona , Masculino , Pessoa de Meia-Idade , Hipersecreção Hipofisária de ACTH/diagnóstico , Estudos Retrospectivos , Centros de Atenção Terciária
20.
Sci Total Environ ; 760: 144092, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33341626

RESUMO

The Amazon rainforest is the world's largest tropical forest, and this biome may be a significant contributor to primary biological aerosol (PBA) emissions on a global scale. These aerosols also play a pivotal role in modulating ecosystem dynamics, dispersing biological material over geographic barriers and influencing climate through radiation absorption, light scattering, or acting as cloud condensation nuclei. Despite their importance, there are limited studies investigating the effect of environmental variables on the bioaerosol composition in the Amazon rainforest. Here we present a 16S rRNA gene-based amplicon sequencing approach to investigate the bacterial microbiome in aerosols of the Amazon rainforest during distinct seasons and at different heights above the ground. Our data revealed that seasonal changes in temperature, relative humidity, and precipitation are the primary drivers of compositional changes in the Amazon rainforest aerosol microbiome. Interestingly, no significant differences were observed in the bacterial community composition of aerosols collected at ground and canopy levels. The core airborne bacterial families present in Amazon aerosol were Enterobacteriaceae, Beijerinckiaceae, Polyangiaceae, Bacillaceae and Ktedonobacteraceae. By correlating the bacterial taxa identified in the aerosol with literature data, we speculate that the phyllosphere may be one possible source of airborne bacteria in the Amazon rainforest. Results of this study indicate that the aerosol microbiota of the Amazon Rainforest are fairly diverse and principally impacted by seasonal changes in temperature and humidity.


Assuntos
Microbiota , Floresta Úmida , Aerossóis , Florestas , Humanos , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA