Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 587(7835): 600-604, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33239798

RESUMO

Sea-level rise due to ice loss in the Northern Hemisphere in response to insolation and greenhouse gas forcing is thought to have caused grounding-line retreat of marine-based sectors of the Antarctic Ice Sheet (AIS)1-3. Such interhemispheric sea-level forcing may explain the synchronous evolution of global ice sheets over ice-age cycles. Recent studies that indicate that the AIS experienced substantial millennial-scale variability during and after the last deglaciation4-7 (roughly 20,000 to 9,000 years ago) provide further evidence of this sea-level forcing. However, global sea-level change as a result of mass loss from ice sheets is strongly nonuniform, owing to gravitational, deformational and Earth rotational effects8, suggesting that the response of AIS grounding lines to Northern Hemisphere sea-level forcing is more complicated than previously modelled1,2,6. Here, using an ice-sheet model coupled to a global sea-level model, we show that AIS dynamics are amplified by Northern Hemisphere sea-level forcing. As a result of this interhemispheric interaction, a large or rapid Northern Hemisphere sea-level forcing enhances grounding-line advance and associated mass gain of the AIS during glaciation, and grounding-line retreat and mass loss during deglaciation. Relative to models without these interactions, the inclusion of Northern Hemisphere sea-level forcing in our model increases the volume of the AIS during the Last Glacial Maximum (about 26,000 to 20,000 years ago), triggers an earlier retreat of the grounding line and leads to millennial-scale variability throughout the last deglaciation. These findings are consistent with geologic reconstructions of the extent of the AIS during the Last Glacial Maximum and subsequent ice-sheet retreat, and with relative sea-level change in Antarctica3-7,9,10.

2.
Nature ; 541(7635): 72-76, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-27951585

RESUMO

Proxy-based indicators of past climate change show that current global climate models systematically underestimate Holocene-epoch climate variability on centennial to multi-millennial timescales, with the mismatch increasing for longer periods. Proposed explanations for the discrepancy include ocean-atmosphere coupling that is too weak in models, insufficient energy cascades from smaller to larger spatial and temporal scales, or that global climate models do not consider slow climate feedbacks related to the carbon cycle or interactions between ice sheets and climate. Such interactions, however, are known to have strongly affected centennial- to orbital-scale climate variability during past glaciations, and are likely to be important in future climate change. Here we show that fluctuations in Antarctic Ice Sheet discharge caused by relatively small changes in subsurface ocean temperature can amplify multi-centennial climate variability regionally and globally, suggesting that a dynamic Antarctic Ice Sheet may have driven climate fluctuations during the Holocene. We analysed high-temporal-resolution records of iceberg-rafted debris derived from the Antarctic Ice Sheet, and performed both high-spatial-resolution ice-sheet modelling of the Antarctic Ice Sheet and multi-millennial global climate model simulations. Ice-sheet responses to decadal-scale ocean forcing appear to be less important, possibly indicating that the future response of the Antarctic Ice Sheet will be governed more by long-term anthropogenic warming combined with multi-centennial natural variability than by annual or decadal climate oscillations.

3.
Proc Natl Acad Sci U S A ; 117(8): 3996-4006, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32047039

RESUMO

The future response of the Antarctic ice sheet to rising temperatures remains highly uncertain. A useful period for assessing the sensitivity of Antarctica to warming is the Last Interglacial (LIG) (129 to 116 ky), which experienced warmer polar temperatures and higher global mean sea level (GMSL) (+6 to 9 m) relative to present day. LIG sea level cannot be fully explained by Greenland Ice Sheet melt (∼2 m), ocean thermal expansion, and melting mountain glaciers (∼1 m), suggesting substantial Antarctic mass loss was initiated by warming of Southern Ocean waters, resulting from a weakening Atlantic meridional overturning circulation in response to North Atlantic surface freshening. Here, we report a blue-ice record of ice sheet and environmental change from the Weddell Sea Embayment at the periphery of the marine-based West Antarctic Ice Sheet (WAIS), which is underlain by major methane hydrate reserves. Constrained by a widespread volcanic horizon and supported by ancient microbial DNA analyses, we provide evidence for substantial mass loss across the Weddell Sea Embayment during the LIG, most likely driven by ocean warming and associated with destabilization of subglacial hydrates. Ice sheet modeling supports this interpretation and suggests that millennial-scale warming of the Southern Ocean could have triggered a multimeter rise in global sea levels. Our data indicate that Antarctica is highly vulnerable to projected increases in ocean temperatures and may drive ice-climate feedbacks that further amplify warming.

4.
Nat Commun ; 14(1): 5432, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37669925

RESUMO

High-resolution ice core records from coastal Antarctica are particularly useful to inform our understanding of environmental changes and their drivers. Here, we present a decadally resolved record of sea-salt sodium (a proxy for open-ocean area) and non-sea salt calcium (a proxy for continental dust) from the well-dated Roosevelt Island Climate Evolution (RICE) core, focusing on the time period between 40-26 ka BP. The RICE dust record exhibits an abrupt shift towards a higher mean dust concentration at 32 ka BP. Investigating existing ice-core records, we find this shift is a prominent feature across Antarctica. We propose that this shift is linked to an equatorward displacement of Southern Hemisphere westerly winds. Subsequent to the wind shift, data suggest a weakening of Southern Ocean upwelling and a decline of atmospheric CO2 to lower glacial values, hence making this shift an important glacial climate event with potentially important insights for future projections.

5.
Nat Commun ; 13(1): 2044, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440628

RESUMO

The Southern Ocean paleoceanography provides key insights into how iron fertilization and oceanic productivity developed through Pleistocene ice-ages and their role in influencing the carbon cycle. We report a high-resolution record of dust deposition and ocean productivity for the Antarctic Zone, close to the main dust source, Patagonia. Our deep-ocean records cover the last 1.5 Ma, thus doubling that from Antarctic ice-cores. We find a 5 to 15-fold increase in dust deposition during glacials and a 2 to 5-fold increase in biogenic silica deposition, reflecting higher ocean productivity during interglacials. This antiphasing persisted throughout the last 25 glacial cycles. Dust deposition became more pronounced across the Mid-Pleistocene Transition (MPT) in the Southern Hemisphere, with an abrupt shift suggesting more severe glaciations since ~0.9 Ma. Productivity was intermediate pre-MPT, lowest during the MPT and highest since 0.4 Ma. Generally, glacials experienced extended sea-ice cover, reduced bottom-water export and Weddell Gyre dynamics, which helped lower atmospheric CO2 levels.


Assuntos
Poeira , Água do Mar , Regiões Antárticas , Atmosfera , Poeira/análise , Oceanos e Mares
6.
Nat Commun ; 13(1): 5787, 2022 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-36184671

RESUMO

Antarctica is one of the most vulnerable regions to climate change on Earth and studying the past and present responses of this polar marine ecosystem to environmental change is a matter of urgency. Sedimentary ancient DNA (sedaDNA) analysis can provide such insights into past ecosystem-wide changes. Here we present authenticated (through extensive contamination control and sedaDNA damage analysis) metagenomic marine eukaryote sedaDNA from the Scotia Sea region acquired during IODP Expedition 382. We also provide a marine eukaryote sedaDNA record of ~1 Mio. years and diatom and chlorophyte sedaDNA dating back to ~540 ka (using taxonomic marker genes SSU, LSU, psbO). We find evidence of warm phases being associated with high relative diatom abundance, and a marked transition from diatoms comprising <10% of all eukaryotes prior to ~14.5 ka, to ~50% after this time, i.e., following Meltwater Pulse 1A, alongside a composition change from sea-ice to open-ocean species. Our study demonstrates that sedaDNA tools can be expanded to hundreds of thousands of years, opening the pathway to the study of ecosystem-wide marine shifts and paleo-productivity phases throughout multiple glacial-interglacial cycles.


Assuntos
Diatomáceas , Regiões Antárticas , DNA Antigo , Diatomáceas/genética , Ecossistema , Eucariotos , Sedimentos Geológicos
7.
Paleoceanogr Paleoclimatol ; 37(7): e2022PA004433, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36247355

RESUMO

Ice loss in the Southern Hemisphere has been greatest over the past 30 years in West Antarctica. The high sensitivity of this region to climate change has motivated geologists to examine marine sedimentary records for evidence of past episodes of West Antarctic Ice Sheet (WAIS) instability. Sediments accumulating in the Scotia Sea are useful to examine for this purpose because they receive iceberg-rafted debris (IBRD) sourced from the Pacific- and Atlantic-facing sectors of West Antarctica. Here we report on the sedimentology and provenance of the oldest of three cm-scale coarse-grained layers recovered from this sea at International Ocean Discovery Program Site U1538. These layers are preserved in opal-rich sediments deposited ∼1.2 Ma during a relatively warm regional climate. Our microCT-based analysis of the layer's in-situ fabric confirms its ice-rafted origin. We further infer that it is the product of an intense but short-lived episode of IBRD deposition. Based on the petrography of its sand fraction and the Phanerozoic 40Ar/39Ar ages of hornblende and mica it contains, we conclude that the IBRD it contains was likely sourced from the Weddell Sea and/or Amundsen Sea embayment(s) of West Antarctica. We attribute the high concentrations of IBRD in these layers to "dirty" icebergs calved from the WAIS following its retreat inland from its modern grounding line. These layers also sit at the top of a ∼366-m thick Pliocene and early Pleistocene sequence that is much more dropstone-rich than its overlying sediments. We speculate this fact may reflect that WAIS mass-balance was highly dynamic during the ∼41-kyr (inter)glacial world.

8.
Nat Commun ; 12(1): 6683, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795275

RESUMO

Emerging ice-sheet modeling suggests once initiated, retreat of the Antarctic Ice Sheet (AIS) can continue for centuries. Unfortunately, the short observational record cannot resolve the tipping points, rate of change, and timescale of responses. Iceberg-rafted debris data from Iceberg Alley identify eight retreat phases after the Last Glacial Maximum that each destabilized the AIS within a decade, contributing to global sea-level rise for centuries to a millennium, which subsequently re-stabilized equally rapidly. This dynamic response of the AIS is supported by (i) a West Antarctic blue ice record of ice-elevation drawdown >600 m during three such retreat events related to globally recognized deglacial meltwater pulses, (ii) step-wise retreat up to 400 km across the Ross Sea shelf, (iii) independent ice sheet modeling, and (iv) tipping point analysis. Our findings are consistent with a growing body of evidence suggesting the recent acceleration of AIS mass loss may mark the beginning of a prolonged period of ice sheet retreat and substantial global sea level rise.

9.
Science ; 334(6060): 1265-9, 2011 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-22144623

RESUMO

The timing of the last maximum extent of the Antarctic ice sheets relative to those in the Northern Hemisphere remains poorly understood. We develop a chronology for the Weddell Sea sector of the East Antarctic Ice Sheet that, combined with ages from other Antarctic ice-sheet sectors, indicates that the advance to and retreat from their maximum extent was within dating uncertainties synchronous with most sectors of Northern Hemisphere ice sheets. Surface climate forcing of Antarctic mass balance would probably cause an opposite response, whereby a warming climate would increase accumulation but not surface melting. Our new data support teleconnections involving sea-level forcing from Northern Hemisphere ice sheets and changes in North Atlantic deep-water formation and attendant heat flux to Antarctic grounding lines to synchronize the hemispheric ice sheets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA