RESUMO
Night-migratory songbirds are remarkably proficient navigators1. Flying alone and often over great distances, they use various directional cues including, crucially, a light-dependent magnetic compass2,3. The mechanism of this compass has been suggested to rely on the quantum spin dynamics of photoinduced radical pairs in cryptochrome flavoproteins located in the retinas of the birds4-7. Here we show that the photochemistry of cryptochrome 4 (CRY4) from the night-migratory European robin (Erithacus rubecula) is magnetically sensitive in vitro, and more so than CRY4 from two non-migratory bird species, chicken (Gallus gallus) and pigeon (Columba livia). Site-specific mutations of ErCRY4 reveal the roles of four successive flavin-tryptophan radical pairs in generating magnetic field effects and in stabilizing potential signalling states in a way that could enable sensing and signalling functions to be independently optimized in night-migratory birds.
Assuntos
Migração Animal , Criptocromos/genética , Campos Magnéticos , Aves Canoras , Animais , Proteínas Aviárias/genética , Galinhas , Columbidae , RetinaRESUMO
Sterols are ubiquitous membrane constituents that persist to a large extent in the environment due to their water insolubility and chemical inertness. Recently, an oxygenase-independent sterol degradation pathway was discovered in a cholesterol-grown denitrifying bacterium Sterolibacterium (S.) denitrificans. It achieves hydroxylation of the unactivated primary C26 of the isoprenoid side chain to an allylic alcohol via a phosphorylated intermediate in a four-step ATP-dependent enzyme cascade. However, this pathway is incompatible with the degradation of widely distributed steroids containing a double bond at C22 in the isoprenoid side chain such as the plant sterol stigmasterol. Here, we have enriched a prototypical delta-24 desaturase from S. denitrificans, which catalyzes the electron acceptor-dependent oxidation of the intermediate stigmast-1,4-diene-3-one to a conjugated (22,24)-diene. We suggest an α4ß4 architecture of the 440 kDa enzyme, with each subunit covalently binding an flavin mononucleotide cofactor to a histidyl residue. As isolated, both flavins are present as red semiquinone radicals, which can be reduced by stigmast-1,4-diene-3-one but cannot be oxidized even with strong oxidizing agents. We propose a mechanism involving an allylic radical intermediate in which two flavin semiquinones each abstract one hydrogen atom from the substrate. The conjugated delta-22,24 moiety formed allows for the subsequent hydroxylation of the terminal C26 with water by a heterologously produced molybdenum-dependent steroid C26 dehydrogenase 2. In conclusion, the pathway elucidated for delta-22 steroids achieves oxygen-independent hydroxylation of the isoprenoid side chain by bypassing the ATP-dependent formation of a phosphorylated intermediate.
Assuntos
Proteínas de Bactérias , Betaproteobacteria , Ácidos Graxos Dessaturases , Estigmasterol , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Molibdênio/química , Estigmasterol/metabolismo , Betaproteobacteria/enzimologia , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Hidroxilação/genética , Flavinas/metabolismoRESUMO
The direct and unambiguous detection and identification of individual metabolite molecules present in complex biological mixtures constitute a major challenge in (bio)analytical research. In this context, nuclear magnetic resonance (NMR) spectroscopy has proven to be particularly powerful owing to its ability to provide both qualitative and quantitative atomic-level information on multiple analytes simultaneously in a noninvasive manner. Nevertheless, NMR suffers from a low inherent sensitivity and, moreover, lacks selectivity regarding the number of individual analytes to be studied in a mixture of a myriad of structurally and chemically very different molecules, e.g., metabolites in a biofluid. Here, we describe a method that circumvents these shortcomings via performing selective, photochemically induced dynamic nuclear polarization (photo-CIDNP) enhanced NMR spectroscopy on unmodified complex biological mixtures, i.e., human urine and serum, which yields a single, background-free one-dimensional NMR spectrum. In doing this, we demonstrate that photo-CIDNP experiments on unmodified complex mixtures of biological origin are feasible, can be performed straightforwardly in the native aqueous medium at physiological metabolite concentrations, and act as a spectral filter, facilitating the analysis of NMR spectra of complex biofluids. Due to its noninvasive nature, the method is fully compatible with state-of-the-art metabolomic protocols providing direct spectroscopic information on a small, carefully selected subset of clinically relevant metabolites. We anticipate that this approach, which, in addition, can be combined with existing high-throughput/high-sensitivity NMR methodology, holds great promise for further in-depth studies and development for use in metabolomics and many other areas of analytical research.
Assuntos
Imageamento por Ressonância Magnética , Metabolômica , Humanos , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodosRESUMO
Charge separation behind moving water drops occurs in nature and technology. Yet, the physical mechanism has remained obscure, as charge deposition is energetically unfavorable. Here, we analyze how a part of the electric double layer charge remains on the dewetted surface. At the contact line, the chemical equilibrium of bound surface charge and diffuse charge in the liquid is influenced by the contact angle and fluid flow. We summarize the mechanism in an analytical model that compares well with experiments and simulations. It correctly predicts that charge separation increases with increasing contact angle and decreases with increasing velocity.
RESUMO
Partial ligand substitution at the iron pentacarbonyl radical cation generates novel half-sandwich complexes of the type [Fe(η6-arene)(CO)2]â + (arene=1,3,5-tri-tert-butylbenzene, 1,3,5-trimethylbenzene, benzene and fluorobenzene). Of those, the bulkier 1,3,5-tri-tert-butylbenzene (mes*) derivative [Fe(mes*)(CO)2]â + was fully characterized by XRD analysis, IR, NMR, cw-EPR, Mössbauer spectroscopy and cyclic voltammetry as the [Al(ORF)4]- (RF=C(CF3)3) salt. Chemical electronation, i. e., the single electron reduction, with decamethylferrocene generates neutral [Fe(mes*)(CO)2], whereas further deelectronation under CO-pressure leads to a dicationic three-legged [Fe(mes*)(CO)3]2+ salt with [Al(ORF)4]- counterion. The full substitution of the carbonyl ligands in [Fe(CO)5]â +[Al(ORF)4]- mainly resulted in disproportionation reactions, giving solid Fe(0) and the dicationic bis-arene salts [Fe(η6-arene)2]2+([Al(ORF)4]-)2 (arene=1,3,5-trimethylbenzene, benzene and fluorobenzene). Only by employing the very large fluoride bridged anion [F-{Al(ORF)3}2]-, it was possible to isolate an open shell bis-arene cation salt [Fe(C6H6)2]â +[F-{Al(ORF)3}2]-. The highly reactive cation was characterized by XRD analysis, cw-EPR, Mössbauer spectroscopy and cyclic voltammetry. The disproportionation of [Fe(C6H6)2]â + salts to give solid Fe(0) and [Fe(C6H6)2]2+ salts was analyzed by a suitable cycle, revealing that the thermodynamic driving force for the disproportionation is a function of the size of the anion used and the polarity of the solvent.
RESUMO
Cyclic transparent optical polymer (CYTOP), a fluoropolymer, finds a plethora of applications in microelectronic devices for sustainable energy harvesting and memory devices. By and large, these devices demand high voltage breakdown, a high dielectric constant, transparency, charge storage, and retention capabilities. Despite many efforts, comprehensive investigation of the charge distribution, retention, and discharge studies conducted on the CYTOP film at the micro-scale remains elusive. Here, we present direct quantification and mapping of surface charge on the CYTOP surface at room temperature using two different modes of advanced surface probe microscopy i.e., Kelvin probe force microscopy (KPFM) and electrostatic force microscopy (EFM). We estimated that the surface charge densities of the CYTOP film using EFM are 1.4 and 3.3 µC/cm2 for the injection of positive and negative charges, respectively. Furthermore, we determined the charge retention time for both injected positive and negative charges. We found that the retention capacity of the negative charges on the CYTOP film is much higher as compared to the positive charges. Moreover, it is also observed that injected negative charges are strongly localized on the CYTOP surface compared to the positive counterpart. Additionally, we demonstrated that charge writing is possible on the CYTOP surface using the AFM conductive tip. These results may find potential applications in energy harvesting, sensing, memory devices, security, and surveillance.
RESUMO
Water drops sliding down inclined hydrophobic, insulating surfaces spontaneously deposit electric charges. However, it is not yet clear how the charges are deposited. The influence of added non-hydrolysable salt, acid, or base in the sliding water drops as well as the surrounding humidity on surface electrification and charge formation is also not yet fully understood. Here, we measure the charging on hydrophobic solid surfaces (coated with PFOTS or PDMS) by sliding drops with varying concentration for different types of solutions. Solutions of NaCl, CaCl2, KNO3, HCl, and NaOH, were studied whose concentrations varied in a range of 0.01 to 100 mM. The charge increased slightly at low concentrations and decreased at higher concentrations. We attribute this decrease to the combined effect of charge screening as the non-hydrolysable salt concentration increases and pH driven charge regulation. The effect of humidity on the measured charge was tested over the range from 10% to 90% of humidity. It was found that the influence of humidity on the charge measurements below 70% humidity is low.
RESUMO
Spontaneous charge separation in drops sliding over a hydrophobized insulator surface is a well-known phenomenon and lots of efforts have been made to utilize this effect for energy harvesting. For maximizing the efficiency of such devices, a comprehensive understanding of the dewetted surface charge would be required to quantitatively predict the electric current signals, in particular for drop sequences. Here, we use a method based on mirror charge detection to locally measure the surface charge density after drops move over a hydrophobic surface. For this purpose, we position a metal electrode beneath the hydrophobic substrate to measure the capacitive current induced by the moving drop. Furthermore, we investigate drop-induced charging on different dielectric surfaces together with the surface neutralization processes. The surface neutralizes over a characteristic time, which is influenced by the substrate and the surrounding environment. We present an analytical model that describes the slide electrification using measurable parameters such as the surface charge density and its neutralization time. Understanding the model parameters and refining them will enable a targeted optimization of the efficiency in solid-liquid charge separation.
RESUMO
Highly oxygenated organic molecules (HOMs) are a major source of new particles that affect the Earth's climate. HOM production from the oxidation of volatile organic compounds (VOCs) occurs during both the day and night and can lead to new particle formation (NPF). However, NPF involving organic vapors has been reported much more often during the daytime than during nighttime. Here, we show that the nitrate radicals (NO3), which arise predominantly at night, inhibit NPF during the oxidation of monoterpenes based on three lines of observational evidence: NPF experiments in the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN (European Organization for Nuclear Research), radical chemistry experiments using an oxidation flow reactor, and field observations in a wetland that occasionally exhibits nocturnal NPF. Nitrooxy-peroxy radicals formed from NO3 chemistry suppress the production of ultralow-volatility organic compounds (ULVOCs) responsible for biogenic NPF, which are covalently bound peroxy radical (RO2) dimer association products. The ULVOC yield of α-pinene in the presence of NO3 is one-fifth of that resulting from ozone chemistry alone. Even trace amounts of NO3 radicals, at sub-parts per trillion level, suppress the NPF rate by a factor of 4. Ambient observations further confirm that when NO3 chemistry is involved, monoterpene NPF is completely turned off. Our results explain the frequent absence of nocturnal biogenic NPF in monoterpene (α-pinene)-rich environments.
Assuntos
Poluentes Atmosféricos , Monoterpenos Bicíclicos , Ozônio , Compostos Orgânicos Voláteis , Monoterpenos/química , Nitratos/química , Aerossóis/análise , Compostos Orgânicos Voláteis/químicaRESUMO
5-Deazaflavins are analogs of naturally occurring flavin cofactors. They serve as substitutes for natural flavin cofactors to investigate and modify the reaction pathways of flavoproteins. Demethylated 5-deazaflavins are potential candidates for artificial cofactors, allowing us to fine-tune the reaction kinetics and absorption characteristics of flavoproteins. In this contribution, demethylated 5-deazariboflavin radicals are investigated (1) to assess the influence of the methyl groups on the electronic structure of the 5-deazaflavin radical and (2) to explore their photophysical properties with regard to their potential as artificial cofactors. We determined the proton hyperfine structure of demethylated 5-deazariboflavins using photochemically induced dynamic nuclear polarization (photo-CIDNP) spectroscopy, as well as density functional theory (DFT). To provide context, we compare our findings to a study of flavin mononucleotide (FMN) derivatives. We found a significant influence of the methylation pattern on the absorption properties, as well as on the proton hyperfine coupling ratios of the xylene moiety, which appears to be solvent-dependent. This effect is enhanced by the replacement of N5 by C5-H in 5-deazaflavin derivatives compared to their respective flavin counterparts.
Assuntos
Dinitrocresóis , Prótons , Riboflavina , Análise Espectral , FlavoproteínasRESUMO
Understanding and controlling the nucleation and crystallization in solution-processed perovskite thin films are critical to achieving high in-plane charge carrier transport in field-effect transistors (FETs). This work demonstrates a simple and effective additive engineering strategy using pentanoic acid (PA). Here, PA is introduced to both modulate the crystallization process and improve the charge carrier transport in 2D 2-thiopheneethylammonium tin iodide ((TEA)2 SnI4 ) perovskite FETs. It is revealed that the carboxylic group of PA is strongly coordinated to the spacer cation TEAI and [SnI6 ]4- framework in the perovskite precursor solution, inducing heterogeneous nucleation and lowering undesired oxidation of Sn2+ during the film formation. These factors contribute to a reduced defect density and improved film morphology, including lower surface roughness and larger grain size, resulting in overall enhanced transistor performance. The reduced defect density and decreased ion migration lead to a higher p-channel charge carrier mobility of 0.7 cm2 V-1 s-1 , which is more than a threefold increase compared with the control device. Temperature-dependent charge transport studies demonstrate a mobility of 2.3 cm2 V-1 s-1 at 100 K due to the diminished ion mobility at low temperatures. This result illustrates that the additive strategy bears great potential to realize high-performance Sn-based perovskite FETs.
RESUMO
The activation of weakly polarized bonds represents a challenging, yet highly valuable process. In this context, precious metal catalysts have been used as reliable compounds for the activation of rather inert bonds for the last several decades. Nevertheless, base-metal complexes including cobalt, iron, or nickel are currently promising candidates for the substitution of noble metals in order to develop more sustainable processes. In the past few years, manganese(I)-based complexes were heavily employed as efficient catalysts for (de)hydrogenation reactions. However, the vast majority of these complexes operate via a metal-ligand bifunctionality as already well implemented for precious metals decades ago. Although high reactivity can be achieved in various reactions, this concept is often not applicable to certain transformations due to outer-sphere mechanisms. In this Account, we outline the potential of alkylated Mn(I)-carbonyl complexes for the activation of nonpolar and moderately polar E-H (E = H, B, C, Si) bonds and disclose our successful approach for the utilization of complexes in the field of homogeneous catalysis. This involves the rational design of manganese complexes for hydrogenation reactions involving ketones, nitriles, carbon dioxide, and alkynes. In addition to that, the reduction of alkenes by dihydrogen could be achieved by a series of well-defined manganese complexes which was not possible before. Furthermore, we elucidate the potential of our Mn-based catalysts in the field of hydrofunctionalization reactions for carbon-carbon multiple bonds. Our investigations unveiled novel insights into reaction pathways of dehydrogenative silylation of alkenes and trans-1,2-diboration of terminal alkynes, which was not yet reported for transition metals. Due to rational catalyst design, these transformations can be achieved under mild reaction conditions. Delightfully, all of the employed complexes are bench-stable compounds. We took advantage of the fact that Mn(I) alkyl complexes are known to undergo migratory insertion of the alkyl group into the CO ligand, yielding an unsaturated acyl intermediate. Hydrogen atom abstraction by the acyl ligand then paves the way to an active species for a variety of catalytic transformations which all proceed via an inner-sphere process. Although these textbook reactions have been well-known for decades, the application in catalytic transformations is still in its infancy. A brief historical overview of alkylated manganese(I)-carbonyl complexes is provided, covering the synthesis and especially iconic stoichiometric transformations, e.g., carbonylation, as intensively examined by Calderazzo, Moss, and others. An outline of potential future applications of defined alkyl manganese complexes will be given, which may inspire researchers for the development of novel (base-)metal catalysts.
Assuntos
Complexos de Coordenação , Manganês , Alcenos/química , Alcinos , Dióxido de Carbono , Catálise , Cobalto , Complexos de Coordenação/química , Hidrogênio/química , Íons , Ferro/química , Cetonas , Ligantes , Manganês/química , Metais/química , Níquel , NitrilasRESUMO
The unsubstituted acenium radical cations (ARCs) are extremely sensitive and were hitherto only studied inâ situ, i. e. in the gas phase, as dilute solutions in strong acids or by matrix isolation spectroscopy at about 10â K. In this study, room temperature stable ARC salts with the weakly coordinating anion [F{Al(ORF )3 }2 ]- (ORF =-OC(CF3 )3 ) supported by the weakly coordinating solvent 1,2,3,4-tetrafluorobenzene (TFB) were prepared and structurally, electrochemically and spectroscopically characterized. Reaction of the neutral acenes with Ag+ [F{Al(ORF )3 }2 ]- led, non-innocent,[54] to intermediate [Ag2 (acene)2 ]2+ complexes, which decompose over time to Ag0 and the corresponding (impure) ARC salts. By contrast, direct deelectronation with the recently developed innocent[54] deelectronator radical cation salt [anthraceneHal ]+â [F{Al(ORF )3 }2 ]- led to phase-pure products [acene]+â [F{Al(ORF )3 }2 ]- (anthraceneHal =9,10-dichlorooctafluoroanthracene; acene=anthra-, tetra-, pentacene). For the first time, a homogenous set of spectroscopic data on analytically pure ARC salts was obtained. In addition, cyclovoltammetric measurements of the acenes connected the potentials in solution with those in the gas-phase. Hence, the data complement the existing isolated gas-phase, strong acid or matrix isolation studies. A first entry to follow-up chemistry of the acenium radical cations as ligand forming oxidizers was demonstrated by reaction with 1 / 2 ${{ 1/2 }}$ Co2 (CO)8 giving [Co(anthracene)(CO)2 ]+ .
RESUMO
The synthesis of imines denotes a cornerstone in organic chemistry. The use of alcohols as renewable substituents for carbonyl-functionality represents an attractive opportunity. Consequently, carbonyl moieties can be inâ situ generated from alcohols upon transition-metal catalysis under inert atmosphere. Alternatively, bases can be utilized under aerobic conditions. In this context, we report the synthesis of imines from benzyl alcohols and anilines, promoted by KOt Bu under aerobic conditions at room temperature, in the absence of any transition-metal catalyst. A detailed investigation of the radical mechanism of the underlying reaction is presented. This reveals a complex reaction network fully supporting the experimental findings.
RESUMO
The mechanistic pathway by which high relative humidity (RH) affects gas-particle partitioning remains poorly understood, although many studies report increased secondary organic aerosol (SOA) yields at high RH. Here, we use real-time, molecular measurements of both the gas and particle phase to provide a mechanistic understanding of the effect of RH on the partitioning of biogenic oxidized organic molecules (from α-pinene and isoprene) at low temperatures (243 and 263 K) at the CLOUD chamber at CERN. We observe increases in SOA mass of 45 and 85% with increasing RH from 10-20 to 60-80% at 243 and 263 K, respectively, and attribute it to the increased partitioning of semi-volatile compounds. At 263 K, we measure an increase of a factor 2-4 in the concentration of C10H16O2-3, while the particle-phase concentrations of low-volatility species, such as C10H16O6-8, remain almost constant. This results in a substantial shift in the chemical composition and volatility distribution toward less oxygenated and more volatile species at higher RH (e.g., at 263 K, O/C ratio = 0.55 and 0.40, at RH = 10 and 80%, respectively). By modeling particle growth using an aerosol growth model, which accounts for kinetic limitations, we can explain the enhancement in the semi-volatile fraction through the complementary effect of decreased compound activity and increased bulk-phase diffusivity. Our results highlight the importance of particle water content as a diluting agent and a plasticizer for organic aerosol growth.
Assuntos
Poluentes Atmosféricos , Monoterpenos , Monoterpenos/química , Umidade , AerossóisRESUMO
Heliobacteria are anoxygenic phototrophs that have a Type I homodimeric reaction center containing bacteriochlorophyll g (BChl g). Previous experimental studies have shown that in the presence of light and dioxygen, BChl g is converted into 81-OH-chlorophyll aF (hereafter Chl aF), with an accompanying loss of light-driven charge separation. These studies suggest that the reaction center only loses the ability to transfer electrons once both BChl g' molecules of the P800 special pair have been converted to Chl aF'. The present work confirms that the partially converted BChl g'/Chl aF' special pair remains functional in samples exposed to dioxygen by demonstrating its presence using hyperfine couplings obtained from Q-band 1H ENDOR, 2D 14N HYSCORE and DFT methods. The DFT calculations of the BChl g'/BChl g' homodimeric primary donor, which are based on the recently published X-ray crystal structure, predict that the unpaired electron spin is equally delocalized over both BChl g' molecules and provide an excellent match to the experimental hyperfine couplings of the anaerobic samples. Exposure to dioxygen leads to substantial changes in the hyperfine interactions, indicative of greater localization of the unpaired electron spin. The measured hyperfine couplings are reproduced in the DFT calculations by replacing one of the BChl g' molecules of the primary donor with a Chl aF' molecule. The calculations reveal that the spin density becomes localized on BChl g' in the heterodimeric primary donor. Time-dependent DFT calculations demonstrate that conversion of either or both of the accessory BChl g molecules and/or one of the BChl g' molecules of P800 to Chl aF' results in minor effects on the energy of the charge-separated states. In contrast, if both of the BChl g' molecules of P800 are converted a large increase in the energy of the charge-separated state occurs. This suggests that the reaction center remains functional when only one half of the dimer is converted, however, conversion of both halves of the P800 dimer leads to loss of function.
Assuntos
Bacterioclorofila A , Bacterioclorofilas , Clorofila A , Bacterioclorofilas/química , Espectroscopia de Ressonância de Spin EletrônicaRESUMO
Deazaflavins are important analogues of the naturally occurring flavins: riboflavin, flavin mononucleotide (FMN), and flavin adenine dinucleotide (FAD). The use of 5-deazaflavin as a replacement coenzyme in a number of flavoproteins has proven particularly valuable in unraveling and manipulating their reaction mechanisms. It was frequently reported that one-electron-transfer reactions in flavoproteins are impeded with 5-deazaflavin as the cofactor. Based on these findings, it was concluded that the 5-deazaflavin radical is significantly less stable compared to the respective flavin semiquinone and quickly re-oxidizes or undergoes disproportionation. The long-standing paradigm of 5-deazaflavin being solely a two-electron/hydride acceptor/donor-"a nicotinamide in flavin clothing"-needs to be re-evaluated now with the indirect observation of a one-electron-reduced (paramagnetic) species using photochemically induced dynamic nuclear polarization (photo-CIDNP) 1 H nuclear magnetic resonance (NMR) under biologically relevant conditions.
RESUMO
The inner membrane-associated protein of 30 kDa (IM30) is essential in chloroplasts and cyanobacteria. The spatio-temporal cellular localization of the protein appears to be highly dynamic and triggered by internal as well as external stimuli, mainly light intensity. The soluble fraction of the protein is localized in the cyanobacterial cytoplasm or the chloroplast stroma, respectively. Additionally, the protein attaches to the thylakoid membrane as well as to the chloroplast inner envelope or the cyanobacterial cytoplasmic membrane, respectively, especially under conditions of membrane stress. IM30 is involved in thylakoid membrane biogenesis and/or maintenance, where it either stabilizes membranes and/or triggers membrane-fusion processes. These apparently contradicting functions have to be tightly controlled and separated spatiotemporally in chloroplasts and cyanobacteria. IM30's fusogenic activity depends on Mg2+ binding to IM30; yet, it still is unclear how Mg2+-loaded IM30 interacts with membranes and promotes membrane fusion. Here, we show that the interaction of Mg2+ with IM30 results in increased binding of IM30 to native, as well as model, membranes. Via atomic force microscopy in liquid, IM30-induced bilayer defects were observed in solid-supported bilayers in the presence of Mg2+. These structures differ dramatically from the membrane-stabilizing carpet structures that were previously observed in the absence of Mg2+. Thus, Mg2+-induced alterations of the IM30 structure switch the IM30 activity from a membrane-stabilizing to a membrane-destabilizing function, a crucial step in membrane fusion.
Assuntos
Synechocystis , Cloroplastos/metabolismo , Fusão de Membrana , Proteínas de Membrana/química , Synechocystis/metabolismo , Tilacoides/químicaRESUMO
The charge state of dielectric surfaces in aqueous environments is of fundamental and technological importance. Here, we study the influence of dissolved molecular CO2 on the charging of three chemically different surfaces (SiO2, Polystyrene, Perfluorooctadecyltrichlorosilane). We determine their charge state from electrokinetic experiments. We compare an ideal, CO2-free reference system to a system equilibrated against ambient CO2 conditions. In the reference system, the salt-dependent decrease of the magnitudes of ζ-potentials follows the expectations for a constant charge scenario. In the presence of CO2, the starting potential is lower by some 50%. The following salt-dependent decrease is weakened for SiO2 and inverted for the organic surfaces. We show that screening and pH-driven charge regulation alone cannot explain the observed effects. As an additional cause, we tentatively suggest dielectric regulation of surface charges due to a diffusively adsorbed thin layer of molecular CO2. The formation of such a dynamic layer, even at the hydrophilic and partially ionized silica surfaces, is supported by a minimal theoretical model and results from molecular simulations.
Assuntos
Dióxido de Silício , Água , Dióxido de Silício/química , Água/química , Interações Hidrofóbicas e Hidrofílicas , Modelos TeóricosRESUMO
Antibodies play an important role in host defense against microorganisms. Besides direct microbicidal activities, antibodies can also provide indirect protection via crosstalk to constituents of the adaptive immune system. Similar to many human chronic viral infections, persistence of Lymphocytic choriomeningitis virus (LCMV) is associated with compromised T- and B-cell responses. The administration of virus-specific non-neutralizing antibodies (nnAbs) prior to LCMV infection protects against the establishment of chronic infection. Here, we show that LCMV-specific nnAbs bind preferentially Ly6Chi inflammatory monocytes (IMs), promote their infection in an Fc-receptor independent way, and support acquisition of APC properties. By constituting additional T-cell priming opportunities, IMs promote early activation of virus-specific CD8 T cells, eventually tipping the balance between T-cell exhaustion and effector cell differentiation, preventing establishment of viral persistence without causing lethal immunopathology. These results document a beneficial role of IMs in avoiding T-cell exhaustion and an Fc-receptor independent protective mechanism provided by LCMV-specific nnAbs against the establishment of chronic infection.