Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chimia (Aarau) ; 75(3): 180-187, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33766200

RESUMO

The reductive part of artificial photosynthesis, the reduction of protons into H2, is a two electron two proton process. It corresponds basically to the reactions occurring in natural photosystem I. We show in this review a selection of involved processes and components which are mandatory for making this light-driven reaction possible at all. The design and the performances of the water reduction catalysts is a main focus together with the question about electron relays or sacrificial electron donors. It is shown how an original catalyst is developed into better ones and what it needs to move from purely academic homogeneous processes to heterogeneous systems. The importance of detailed mechanistic knowledge obtained from kinetic data is emphasized.

2.
Inorg Chem ; 57(3): 1651-1655, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29368926

RESUMO

Cobalt complexes are well-known catalysts for photocatalytic proton reduction in water. Macrocyclic tetrapyridyl ligands (pyrphyrins) and their CoII complexes emerged in this context as a highly efficient class of H2 evolution catalysts. On the basis of this framework, a new macrocyclic CoII complex consisting of two keto-bridged bipyridyl units (Co diketo-pyrphyrin) is presented. The complex is synthesized along a convenient route, is well soluble in water, and shows high activity as a water reduction catalyst (WRC). In an aqueous system containing [Ru(bpy)3]Cl2 as a photosensitizer and NaAscO as a sacrificial electron donor, turnover numbers (TONs) of 2500 H2/Co were achieved. Catalysis is terminated by a limited electron supply and decomposition of the photosensitizer but not of the WRC, highlighting the distinct stability of Co diketo-pyrphyrin.

3.
ChemSusChem ; 15(17): e202201049, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-35765252

RESUMO

Syntheses and mechanisms of two dinuclear Co-polypyridyl catalysts for the H2 evolution reaction (HER) were reported and compared to their mononuclear analogue (R1). In both catalysts, two di-(2,2'-bipyridin-6-yl)-methanone units were linked by either 2,2'-bipyridin-6,6'-yl or pyrazin-2,5-yl. Complexation with CoII gave dinuclear compounds bridged by pyrazine (C2) or bipyridine (C1). Photocatalytic HER gave turnover numbers (TONs) of up to 20000 (C2) and 7000 (C1) in water. Electrochemically, C1 was similar to the R1, whereas C2 showed electronic coupling between the two Co centers. The E(CoII/I ) split by 360 mV into two separate waves. Proton reduction in DMF was investigated for R1 with [HNEt3 ](BF4 ) by simulation, foot of the wave analysis, and linear sweep voltammetry (LSV) with in-line detection of H2 . All methods agreed well with an (E)ECEC mechanism and the first protonation being rate limiting (≈104  m-1 s-1 ). The second reduction was more anodic than the first one. pKa values of around 10 and 7.5 were found for the two protonations. LSV analysis with H2 detection for all catalysts and acids with different pKa values [HBF4 , pKa (DMF)≈3.4], intermediate {[HNEt3 ](BF4 ), pKa (DMF)≈9.2} to weak [AcOH, pKa (DMF)≈13.5] confirmed electrochemical H2 production, distinctly dependent on the pKa values. Only HBF4 protonated CoI intermediates. The two metals in the dualcore C2 cooperated with an increase in rate to a competitive 105  m-1 s-1 with [HNEt3 ](BF4 ). The overpotential decreased compared to R1 by 100 mV. Chronoamperometry established high stabilities for all catalysts with TONlim of 100 for R1 and 320 for C1 and C2.


Assuntos
Cobalto , Hidrogênio , Catálise , Cobalto/química , Hidrogênio/química , Prótons , Água/química
4.
ChemSusChem ; 10(22): 4570-4580, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-29052339

RESUMO

A series of eight new and three known cobalt polypyridyl-based hydrogen-evolving catalysts (HECs) with distinct electronic and structural differences are benchmarked in photocatalytic runs in water. Methylene-bridged bis-bipyridyl is the preferred scaffold, both in terms of stability and rate. For a cobalt complex of the tetradentate methanol-bridged bispyridyl-bipyridyl complex [CoII Br(tpy)]Br, a detailed mechanistic picture is obtained by combining electrochemistry, spectroscopy, and photocatalysis. In the acidic branch, a proton-coupled electron transfer, assigned to formation of CoIII -H, is found upon reduction of CoII , in line with a pKa (CoIII -H) of approximately 7.25. Subsequent reduction (-0.94 V vs. NHE) and protonation close the catalytic cycle. Methoxy substitution on the bipyridyl scaffold results in the expected cathodic shift of the reduction, but fails to change the pKa (CoIII -H). An analysis of the outcome of the benchmarking in view of this postulated mechanism is given along with an outlook for design criteria for new generations of catalysts.


Assuntos
Cobalto/química , Hidrogênio/química , Piridinas/química , Água/química , 2,2'-Dipiridil , Catálise , Complexos de Coordenação/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA