Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Plant Physiol ; 195(2): 1365-1381, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38471799

RESUMO

Several starch synthesis regulators have been identified, but these regulators are situated in the terminus of the regulatory network. Their upstream regulators and the complex regulatory network formed between these regulators remain largely unknown. A previous study demonstrated that NAM, ATAF, and CUC (NAC) transcription factors, OsNAC20 and OsNAC26 (OsNAC20/26), redundantly and positively regulate the accumulation of storage material in rice (Oryza sativa) endosperm. In this study, we detected OsNAC25 as an upstream regulator and interacting protein of OsNAC20/26. Both OsNAC25 mutation and OE resulted in a chalky seed phenotype, decreased starch content, and reduced expression of starch synthesis-related genes, but the mechanisms were different. In the osnac25 mutant, decreased expression of OsNAC20/26 resulted in reduced starch synthesis; however, in OsNAC25-overexpressing plants, the OsNAC25-OsNAC20/26 complex inhibited OsNAC20/26 binding to the promoter of starch synthesis-related genes. In addition, OsNAC20/26 positively regulated OsNAC25. Therefore, the mutual regulation between OsNAC25 and OsNAC20/26 forms a positive regulatory loop to stimulate the expression of starch synthesis-related genes and meet the great demand for starch accumulation in the grain filling stage. Simultaneously, a negative regulatory loop forms among the 3 proteins to avoid the excessive expression of starch synthesis-related genes. Collectively, our findings demonstrate that both promotion and inhibition mechanisms between OsNAC25 and OsNAC20/26 are essential for maintaining stable expression of starch synthesis-related genes and normal starch accumulation.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza , Proteínas de Plantas , Amido , Fatores de Transcrição , Oryza/genética , Oryza/metabolismo , Amido/metabolismo , Amido/biossíntese , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Endosperma/metabolismo , Endosperma/genética
2.
Plant Mol Biol ; 108(4-5): 343-361, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34387795

RESUMO

KEY MESSAGE: FLO6 is involved in starch synthesis by interacting with SSIVb and GBSS in rice. Starch synthesized and stored in plastids including chloroplasts and amyloplasts plays a vital role in plant growth and provides the major energy for human diet. However, the molecular mechanisms by which regulate starch synthesis remain largely unknown. In this study, we identified and characterized a rice floury endosperm mutant M39, which exhibited defective starch granule formation in pericarp and endosperm, accompanied by the decreased starch content and amylose content. The abnormal starch accumulation in M39 pollen grains caused a significant decrease in plant fertility. Chloroplasts in M39 leaves contained no or only one large starch granule. Positional cloning combined with complementary experiment demonstrated that the mutant phenotypes were restored by the FLOURY ENDOSPERM6 (FLO6). FLO6 was generally expressed in various tissues, including leaf, anther and developing endosperm. FLO6 is a chloroplast and amyloplast-localized protein that is able to bind to starch by its carbohydrate-binding module 48 (CBM48) domain. Interestingly, we found that FLO6 interacted with starch synthase IVb (SSIVb) and granule-bound starch synthase (GBSSI and GBSSII). Together, our results suggested that FLO6 plays a critical role in starch synthesis through cooperating with several starch synthesis enzymes throughout plant growth and development.


Assuntos
Oryza/metabolismo , Proteínas de Plantas/metabolismo , Sintase do Amido/metabolismo , Amido/biossíntese , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Mutação , Oryza/enzimologia , Oryza/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Pólen/metabolismo , Ligação Proteica , Domínios Proteicos/fisiologia , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
3.
Molecules ; 27(6)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35335271

RESUMO

Sweet potato is a root tuber crop and an important starch source. There are hundreds of sweet potato varieties planted widely in the world. Starches from varieties with different genotype types and originating from different countries have not been compared for their physicochemical properties. In the research, starches from 44 sweet potato varieties originating from 15 countries but planted in the same growing conditions were investigated for their physicochemical properties to reveal the similarities and differences in varieties. The results showed that the 44 starches had granule size (D[4,3]) from 8.01 to 15.30 µm. Starches had different iodine absorption properties with OD680 from 0.259 to 0.382 and OD620/550 from 1.142 to 1.237. The 44 starches had apparent amylose content from 19.2% to 29.2% and true amylose content from 14.2% to 20.2%. The starches exhibited A-, CA-, CC-, or CB-type X-ray diffraction patterns. The thermograms of 44 starches exhibited one-, two-, or three-peak curves, leading to a significantly different gelatinization temperature range from 13.1 to 29.2 °C. The significantly different starch properties divide the 44 sweet potato varieties into different groups due to their different genotype backgrounds. The research offers references for the utilization of sweet potato germplasm.


Assuntos
Ipomoea batatas , Amilose/química , Fenômenos Químicos , Ipomoea batatas/química , Tubérculos , Amido/química
4.
Molecules ; 27(11)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35684323

RESUMO

C-type starches with different proportions of A- and B-type crystallinities have different intensities and crystallinities of X-ray diffraction peaks. In this study, the intensities and crystallinities of X-ray diffraction peaks, molecular components and heat properties of C-type starches were investigated in seven sweet potato varieties, and their relationships were analyzed. The intensity and crystallinity of a diffraction peak at 5.6° were significantly positively correlated to the DP6-12 branch-chains of amylopectin and significantly negatively correlated to the true amylose content (TAC) determined by concanavalin A precipitation, gelatinization temperature, gelatinization enthalpy, water solubility at 95 °C, and pasting temperature. The intensity of diffraction peaks at 15° and 23° were significantly positively correlated to the gelatinization temperature and pasting temperature and significantly negatively correlated to the pasting peak viscosity. The significantly positive relationships were detected between the crystallinity of a diffraction peak at 15° and the DP13-24 branch-chains of amylopectin, gelatinization conclusion temperature and water solubility, between the crystallinity of diffraction peak at 17-18° and the TAC, gelatinization onset temperature, water solubility and pasting temperature, between the crystallinity of a diffraction peak at 23° and the gelatinization conclusion temperature and pasting peak time, and between the total crystallinity and the TAC, gelatinization conclusion temperature, water solubility and pasting temperature. The score plot of principle component analysis showed that the molecular components and heat property parameters could differentiate the C-type starches and agreed with their characteristics of X-ray diffraction peaks. This study provides some references for the utilizations of C-type starches.


Assuntos
Ipomoea batatas , Amilopectina , Amilose , Temperatura Alta , Amido , Temperatura , Água , Difração de Raios X
5.
Plant Physiol ; 184(4): 1775-1791, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32989010

RESUMO

Starch and storage proteins determine the weight and quality of cereal grains. Synthesis of these two grain components has been comprehensively investigated, but the transcription factors responsible for their regulation remain largely unknown. In this study, we investigated the roles of NAM, ATAF, and CUC (NAC) transcription factors, OsNAC20, and OsNAC26 in starch and storage protein synthesis in rice (Oryza sativa) endosperm. OsNAC20 and OsNAC26 showed high levels of amino acid sequence similarity. Both were localized in the aleurone layer, starchy endosperm, and embryo. Mutation of OsNAC20 or OsNAC26 alone had no effect on the grain, while the osnac20/26 double mutant had significantly decreased starch and storage protein content. OsNAC20 and OsNAC26 alone could directly transactivate the expression of starch synthaseI (SSI), pullulanase (Pul), glutelin A1 (GluA1), glutelin B4/5 (GluB4/5), α-globulin, and 16 kD prolamin and indirectly influenced plastidial disproportionating enzyme1 (DPE1) expression to regulate starch and storage protein synthesis. Although they could also bind to the promoters of ADP-Glc pyrophosphorylase small subunit 2b (AGPS2b), ADP-Glc pyrophosphorylase large subunit 2 (AGPL2), and starch branching enzymeI (SBEI), and the expression of the three genes was largely decreased in the osnac20/26 mutant, ADP-Glc pyrophosphorylase and starch branching enzyme activities were unchanged in this double mutant. In addition, OsNAC20 and OsNAC26 are main regulators of Pul, GluB4, α-globulin, and 16 kD prolamin In conclusion, OsNAC20 and OsNAC26 play an essential and redundant role in the regulation of starch and storage protein synthesis.


Assuntos
Grão Comestível/genética , Grão Comestível/metabolismo , Oryza/genética , Oryza/metabolismo , Biossíntese de Proteínas/genética , Amido/biossíntese , Amido/genética , Fatores de Transcrição/metabolismo , Endosperma/genética , Endosperma/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Mutação
6.
Plant Physiol ; 183(4): 1696-1709, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32482908

RESUMO

In maize (Zea mays), kernel weight is an important component of yield that has been selected during domestication. Many genes associated with kernel weight have been identified through mutant analysis. Most are involved in the biogenesis and functional maintenance of organelles or other fundamental cellular activities. However, few quantitative trait loci (QTLs) underlying quantitative variation in kernel weight have been cloned. Here, we characterize a QTL, qKW9, associated with maize kernel weight. This QTL encodes a DYW motif pentatricopeptide repeat protein involved in C-to-U editing of ndhB, a subunit of the chloroplast NADH dehydrogenase-like complex. In a null qkw9 background, C-to-U editing of ndhB was abolished, and photosynthesis was reduced, resulting in less maternal photosynthate available for grain filling. Characterization of qKW9 highlights the importance of optimizing photosynthesis for maize grain yield production.


Assuntos
Locos de Características Quantitativas/genética , Zea mays/fisiologia , Grão Comestível/genética , Grão Comestível/metabolismo , Grão Comestível/fisiologia , Fotossíntese/genética , Fotossíntese/fisiologia , Zea mays/genética , Zea mays/metabolismo
7.
Molecules ; 26(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34885720

RESUMO

Three sweet potato varieties with purple-, yellow-, and white-fleshed root tubers were planted in four growing locations. Starches were isolated from their root tubers, their physicochemical properties (size, iodine absorption, amylose content, crystalline structure, ordered degree, lamellar thickness, swelling power, water solubility, and pasting, thermal and digestion properties) were determined to investigate the effects of variety and growing location on starch properties in sweet potato. The results showed that granule size (D[4,3]) ranged from 12.1 to 18.2 µm, the iodine absorption parameters varied from 0.260 to 0.361 for OD620, from 0.243 to 0.326 for OD680 and from 1.128 to 1.252 for OD620/550, and amylose content varied from 16.4% to 21.2% among starches from three varieties and four growing locations. Starches exhibited C-type X-ray diffraction patterns, and had ordered degrees from 0.634 to 0.726 and lamellar thicknesses from 9.72 to 10.21 nm. Starches had significantly different swelling powers, water solubilities, pasting viscosities, and thermal properties. Native starches had rapidly digestible starch (RDS) from 2.2% to 10.9% and resistant starch (RS) from 58.2% to 89.1%, and gelatinized starches had RDS from 70.5% to 81.4% and RS from 10.8% to 23.3%. Two-way ANOVA analysis showed that starch physicochemical properties were affected significantly by variety, growing location, and their interaction in sweet potato.


Assuntos
Amilose/química , Ipomoea batatas/química , Raízes de Plantas/química , Amido/química , Iodo/farmacologia , Ipomoea batatas/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Tubérculos/química , Solubilidade , Amido/isolamento & purificação , Viscosidade
8.
Plant Mol Biol ; 103(3): 355-371, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32193789

RESUMO

KEYMESSAGE: Biphasic starch granules in maize ae mutant underwent the weak to strong SBEIIb-defective effect during endosperm development, leading to no birefringence in their exterior due to extended long branch-chains of amylopectin. Biphasic starch granules are usually detected regionally in cereal endosperm lacking starch branching enzyme (SBE). However, their molecular structure, formation mechanism, and regional distribution are unclear. In this research, biphasic starch granules were observed in the inner region of crown endosperm of maize ae mutant, and had poorly oriented structure with comb-like profiles in their exterior. The inner endosperm (IE) rich in biphasic starch granules and outer endosperm (OE) without biphasic starch granules were investigated. The starch had lower amylose content and higher proportion of long branch-chains of amylopectin in IE than in OE, and the exterior of biphasic starch granules had less amylose and more long branch-chains of amylopectin than the interior. Compared with OE, the expression pattern of starch synthesis related enzymes changed significantly in IE. The granule-bound starch synthase I activity within biphasic starch granules decreased slightly. The IE experienced more severe hypoxic stress than OE, and the up-regulated anaerobic respiration pathway indicated an increase in carbon consumption. The starch in IE underwent the SBEIIb-defective effect from weak to strong due to the lack of sufficient carbon inflow, leading to the formation of biphasic starch granules and their regional distribution in endosperm. The results provided information for understanding the biphasic starch granules.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Amido/metabolismo , Zea mays/enzimologia , Enzima Ramificadora de 1,4-alfa-Glucana/classificação , Enzima Ramificadora de 1,4-alfa-Glucana/genética , Endosperma/enzimologia , Endosperma/ultraestrutura , Amido/ultraestrutura
9.
Plant Physiol ; 176(1): 582-595, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29133372

RESUMO

Rice (Oryza sativa) endosperm is mainly occupied by homogeneous polygonal starch from inside to outside. However, morphologically different (heterogeneous) starches have been identified in some rice mutants. How these heterogeneous starches form remains unknown. A high-amylose rice line (TRS) generated through the antisense inhibition of starch branching synthase I (SBEI) and SBEIIb contains four heterogeneous starches: polygonal, aggregate, elongated, and hollow starch; these starches are regionally distributed in the endosperm from inside to outside. Here, we investigated the relationship between SBE dosage and the morphological architecture of heterogeneous starches in TRS endosperm from the view of the molecular structure of starch. The results indicated that their molecular structures underwent regular changes, including gradually increasing true amylose content but decreasing amylopectin content and gradually increasing the ratio of amylopectin long chain but decreasing the ratio of amylopectin short chain. Granule-bound starch synthase I (GBSSI) amounts in the four heterogeneous starches were not significantly different from each other, but SBEI, SBEIIa, and SBEIIb showed a gradually decreasing trend. Further immunostaining analysis revealed that the gradually decreasing SBEs acting on the formation of the four heterogeneous granules were mainly due to the spatial distribution of the three SBEs in the endosperm. It was suggested that the decreased amylopectin in starch might remove steric hindrance and provide extra space for abundant amylose accumulation when the GBSSI amount was not elevated. Furthermore, extra amylose coupled with altered amylopectin structure possibly led to morphological changes in heterogeneous granules.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Grânulos Citoplasmáticos/enzimologia , Oryza/enzimologia , Plantas Geneticamente Modificadas/metabolismo , Amido/metabolismo , Amilopectina/química , Amilopectina/metabolismo , Amilose/metabolismo , Regulação para Baixo , Endosperma/enzimologia , Pleiotropia Genética , Isoenzimas/metabolismo , Proteínas de Plantas/metabolismo
10.
Molecules ; 24(24)2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31847303

RESUMO

Rice mutants with altered starch components and properties are important genetic resources in rice breeding programmes. In this study, 44 mutants with altered starch components were screened from 135 rice mutants with opaque kernels using a starch-iodine absorption spectrum method, and nine mutants from them were further selected for investigating their starch properties and kernel appearance quality. The results showed that the iodine absorption spectrum parameters, OD620, OD620/550, and λmax, could reflect the changes of starch components in rice mutants, and had significantly positive relationships with amylose content and negative relationships with the proportion of short branch-chains of amylopectin. The endosperm starches from nine mutants all showed A-type crystalline structure and similar short-range ordered structure, but had different relative crystallinities. The changes of starch components in mutants not only resulted in the different gelatinization properties of starch but also changed the appearance quality of brown rice kernels. This study provided abundant genetic plants for studying the molecular mechanism of starch synthesis and the quality regulation of rice kernels.


Assuntos
Mutação , Oryza/genética , Amido/análise , Amilopectina/análise , Amilose/análise , Cristalografia por Raios X , Qualidade dos Alimentos , Oryza/química , Melhoramento Vegetal , Amido/química
11.
BMC Plant Biol ; 18(1): 9, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29310584

RESUMO

BACKGROUND: Endosperm starch provides prime energy for cereal seedling growth. Cereal endosperm with repression of starch branching enzyme (SBE) has been widely studied for its high resistant starch content and health benefit. However, in barley and maize, the repression of SBE changes starch component and amylopectin structure which affects grain germination and seedling establishment. A high resistant starch rice line (TRS) has been developed through inhibiting SBEI/IIb, and its starch has very high resistance to in vitro hydrolysis and digestion. However, it is unclear whether the starch resists in situ degradation in seed and influences seedling growth after grain germination. RESULTS: In this study, TRS and its wild-type rice cultivar Te-qing (TQ) were used to investigate the seedling growth, starch property changes, and in situ starch degradation during seedling growth. The slow degradation of starch in TRS seed restrained the seedling growth. The starch components including amylose and amylopectin were simultaneously degraded in TQ seeds during seedling growth, but in TRS seeds, the amylose was degraded faster than amylopectin and the amylopectin long branch-chains with B-type crystallinity had high resistance to in situ degradation. TQ starch was gradually degraded from the proximal to distal region of embryo and from the outer to inner in endosperm. However, TRS endosperm contained polygonal, aggregate, elongated and hollow starch from inner to outer. The polygonal starch similar to TQ starch was completely degraded, and the other starches with long branch-chains of amylopectin and B-type crystallinity were degraded faster at the early stage of seedling growth but had high resistance to in situ degradation during TRS seedling growth. CONCLUSIONS: The B-type crystallinity and long branch-chains of amylopectin in TRS seed had high resistance to in situ degradation, which inhibited TRS seedling growth.


Assuntos
Amilopectina/metabolismo , Oryza/metabolismo , Plântula/metabolismo , Enzima Ramificadora de 1,4-alfa-Glucana/genética , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Oryza/genética , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plântula/crescimento & desenvolvimento
12.
Int J Mol Sci ; 19(11)2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-30380735

RESUMO

High-resistant starch cereal crops with the inhibition of the starch branching enzyme (SBE) have been widely studied. However, the effects of the inhibition of SBE on waxy cereal crops are unclear. A transgenic rice line (GTR) derived from a japonica waxy rice cultivar Guang-ling-xiang-nuo (GLXN) has been developed through antisense RNA inhibition of both SBEI and SBEIIb. In this study, GLXN and GTR were cultivated in the dark only in deionized H2O, and their shoot and root growth, starch in situ degradation, and starch property changes were investigated during seedling growth. Compared with GLXN, GTR showed a significantly slow seedling growth, which was not due to the embryo size and vitality. The slow degradation of starch in the seed restrained the seedling growth. GLXN starch was completely degraded gradually from the proximal to distal region of the embryo and from the outer to inner region in the endosperm, but GTR starch in the peripheral region of the endosperm was not completely degraded, and the starch residual was located in the outside of the compound starch though its degradation pattern was similar to GLXN. During seedling growth, GLXN starch had the same A-type crystallinity and a similar ordered structure, but the crystallinity changed from the CA-type to B-type and the ordered structure gradually increased in the GTR starch. The above results indicated that GTR had a heterogeneous starch distributed regionally in the endosperm. The starch in the peripheral region of the endosperm had a B-type crystallinity, which was located in the outside of the compound starch and significantly increased the resistance to in situ degradation, leading to the seedling slow growth.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Endosperma/metabolismo , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Plântula/crescimento & desenvolvimento , Amido/metabolismo
13.
Int J Mol Sci ; 19(8)2018 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-30072633

RESUMO

Starch, as a main energy storage substance, plays an important role in plant growth and human life. Despite the fact that several enzymes and regulators involved in starch biosynthesis have been identified, the regulating mechanism of starch synthesis is still unclear. In this study, we isolated a rice floury endosperm mutant M14 from a mutant pool induced by 60Co. Both total starch content and amylose content in M14 seeds significantly decreased, and starch thermal and pasting properties changed. Compound starch granules were defected in the floury endosperm of M14 seeds. Map-based cloning and a complementation test showed that the floury endosperm phenotype was determined by a gene of OsPPDKB, which encodes pyruvate orthophosphate dikinase (PPDK, EC 2.7.9.1). Subcellular localization analysis demonstrated that PPDK was localized in chloroplast and cytoplasm, the chOsPPDKB highly expressed in leaf and leaf sheath, and the cyOsPPDKB constitutively expressed with a high expression in developing endosperm. Moreover, the expression of starch synthesis-related genes was also obviously altered in M14 developing endosperm. The above results indicated that PPDK played an important role in starch metabolism and structure in rice endosperm.


Assuntos
Substituição de Aminoácidos , Endosperma/genética , Oryza/genética , Proteínas de Plantas/genética , Piruvato Ortofosfato Diquinase/genética , Amido/metabolismo , Endosperma/metabolismo , Endosperma/ultraestrutura , Regulação da Expressão Gênica de Plantas , Oryza/metabolismo , Oryza/ultraestrutura , Proteínas de Plantas/análise , Proteínas de Plantas/metabolismo , Piruvato Ortofosfato Diquinase/análise , Piruvato Ortofosfato Diquinase/metabolismo , Sementes/genética , Sementes/metabolismo , Sementes/ultraestrutura , Amido/ultraestrutura
14.
Molecules ; 23(9)2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-30149543

RESUMO

The dry root tuber of Apios fortunei contained about 75% starch, indicating that it is an important starch resource. Starch displayed spherical, polygonal, and ellipsoidal granules with central hila. Granule sizes ranged from 3 to 30 µm with a 9.6 µm volume-weighted mean diameter. The starch had 35% apparent amylose content and exhibited CA-type crystalline structure with 25.9% relative crystallinity. The short-range ordered degree in the granule external region was approximately 0.65, and the lamellar thickness was approximately 9.6 nm. The swelling power and water solubility began to increase from 70 °C and reached 28.7 g/g and 10.8% at 95 °C. Starch had typical bimodal thermal curve in water with gelatinization temperatures from 61.8 to 83.9 °C. The 7% (w/w) starch-water slurry had peak, hot, breakdown, final, and setback viscosities of 1689, 1420, 269, 2103, and 683 mPa s, respectively. Rapidly digestible starch, slowly digestible starch, and resistant starch were 6.04%, 10.96%, and 83.00% in native starch; 83.16%, 15.23%, and 1.61% in gelatinized starch; and 78.13%, 17.88%, and 3.99% in retrograded starch, respectively. The above physicochemical properties of A. fortunei starch were compared with those of maize A-type starch, potato B-type starch, and pea C-type starch. The hierarchical cluster analysis based on starch structural and functional property parameters showed that A. fortunei and pea starches had similar physicochemical properties and were more related to maize starch than potato starch.


Assuntos
Fenômenos Químicos , Pisum sativum/química , Tubérculos/química , Solanum tuberosum/química , Amido/química , Zea mays/química , Adsorção , Amilose/química , Iodo/química , Tamanho da Partícula , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Açúcares/química , Termogravimetria , Difração de Raios X
15.
Molecules ; 23(12)2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30544638

RESUMO

Chestnut is a popular food in many countries and is also an important starch source. In previous studies, physicochemical properties of starches have been compared among different Chinese chestnut varieties growing under different conditions. In this study, nine Chinese chestnut varieties from the same farm were investigated for starch physicochemical properties to exclude the effects of growing conditions. The dry kernels had starch contents from 42.7 to 49.3%. Starches from different varieties had similar morphologies and exhibited round, oval, ellipsoidal, and polygonal shapes with a central hilum and smooth surface. Starch had bimodal size distribution and the volume-weighted mean diameter ranged from 7.2 to 8.2 µm among nine varieties. The starches had apparent amylose contents from 23.8 to 27.3% but exhibited the same C-type crystalline structure and similar relative crystallinity, ordered degree, and lamellar structure. The gelatinization onset, peak, and conclusion temperatures ranged from 60.4 to 63.9 °C, from 64.8 to 68.3 °C, and from 70.5 to 74.5 °C, respectively, among nine starches; and the peak, hot, breakdown, final, and setback viscosities ranged from 5524 to 6505 mPa s, from 3042 to 3616 mPa s, from 2205 to 2954 mPa s, from 4378 to 4942 mPa s, and from 1326 to 1788 mPa s, respectively. The rapidly digestible starch, slowly digestible starch, and resistant starch ranged from 2.6 to 3.7%, from 5.7 to 12.7%, and from 84.4 to 90.7%, respectively, for native starch, and from 79.6 to 89.5%, from 1.3 to 3.8%, and from 7.1 to 17.4%, respectively, for gelatinized starch.


Assuntos
Fenômenos Químicos , Hippocastanaceae/química , Amido/química , Amilose/análise , Varredura Diferencial de Calorimetria , Iodo/química , Peso Molecular , Nozes/química , Análise de Componente Principal , Espalhamento a Baixo Ângulo , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Termogravimetria , Difração de Raios X
16.
Molecules ; 23(2)2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29462852

RESUMO

Chinese yam is an important edible starch plant and widely cultivated in China. Its rhizome and bulbil are starch storage tissues below and above ground, respectively. In this paper, starches were isolated from the rhizome and bulbil of Chinese yam, and their structural and functional properties were compared. Both starches had an oval shape with an eccentric hilum and a CA-type crystalline structure. Their short-range ordered structure and lamellar structure had no significant difference. However, the rhizome starch had a significantly bigger granule size and lower amylose content than the bulbil starch. The swelling power and water solubility were significantly lower in the rhizome starch than in the bulbil starch. The onset and peak gelatinization temperatures were significantly higher in the rhizome starch than in the bulbil starch. The rhizome starch had a significantly higher breakdown viscosity and a lower setback viscosity than the bulbil starch. The thermal stability was lower in the rhizome starch than in the bulbil starch. The rhizome starch had a significantly lower resistance to hydrolysis and in vitro digestion than the bulbil starch. The above results provide important information for the utilization of rhizome and bulbil starches of Chinese yam.


Assuntos
Dioscorea/química , Rizoma/química , Amido/química , Amilose/química , Hidrólise , Rizoma/metabolismo , Solubilidade , Amido/metabolismo , Relação Estrutura-Atividade , Temperatura
17.
Molecules ; 23(9)2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-30149569

RESUMO

Different-colored sweet potatoes have different contents of pigments and phenolic compounds in their root tubers, which influence the isolation of starch. It is important to justify the identification of the most suitable isolation medium of starch from different colored root tubers. In this study, starches were isolated from root tubers of purple, yellow and white sweet potatoes using four different extraction media, including H2O, 0.5% Na2S2O5, 0.2% NaOH, and both 0.5% Na2S2O5 and 0.2% NaOH. Their structural and functional properties were investigated and compared among different extraction media. The results showed that the granule size, apparent amylose content, lamellar peak intensity, thermal properties, and pasting properties were different among different-colored sweet potatoes due to their different genotype backgrounds. The four extraction media had no significant effects on starch structural properties, including apparent amylose content, crystalline structure, ordered degree, and lamellar peak intensity, except that the NaOH and Na2S2O5 treatment were able to increase the whiteness of purple and yellow sweet potato starches. The different extraction media had some effects on starch functional properties, including thermal properties, swelling power, water solubility, and pasting properties. The above results indicated that the H2O was the most suitable extraction medium to simply and fast isolate starch from root tubers of different-colored sweet potatoes.


Assuntos
Ipomoea batatas/química , Tubérculos/química , Amido/química , Amilose/química , Iodo/química , Estrutura Molecular , Tamanho da Partícula , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Água , Difração de Raios X
18.
Molecules ; 23(9)2018 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-30208563

RESUMO

Green banana fruit is an important starch resource that consists of flesh and peel. The physicochemical properties of flesh starch have been widely studied; however, those of peel starch have hardly been studied, leading to the waste of peel. In this study, the physicochemical properties of the starches from the flesh and peel of green banana fruit were investigated and compared. The dry flesh and peel had 69.5% and 22.6% starch content, respectively. The starch had oval and irregular granules with eccentric hila. Their starches had similar bimodal size distribution; the volume-weighted mean diameter was approximate 17 µm, and the peel starch had a slightly smaller granule size than the flesh starch. The maximum absorption wavelength was higher in peel starch than in flesh starch. The apparent amylose content of flesh and peel starch was 21.3% and 25.7%, respectively. The flesh and peel starches both exhibited B-type crystalline structures and had similar relative crystallinity, short-range ordered degrees, and lamellar structures. The swelling power was similar between flesh and peel starches, but the water solubility was higher in peel starch than in flesh starch at 95 °C. The peel starch had a higher gelatinization temperature than flesh starch, but their gelatinization temperature range and enthalpy were similar. Both flesh and peel starches showed a diphasic hydrolysis dynamic, but peel starch had higher resistance to porcine pancreatic α-amylase hydrolysis than flesh starch. The contents of rapidly digestible starch, slowly digestible starch, and the resistant starch of flesh and peel were 1.7%, 4.3%, 94.1% and 1.4%, 3.4%, 95.2%, respectively, for native starch, and 73.0%, 5.1%, 21.9%, and 72.3%, 4.5%, 23.2%, respectively, for gelatinized starch.


Assuntos
Musa/química , Amido/análise , Animais , Hidrólise , Musa/metabolismo , Tamanho da Partícula , Extratos Vegetais/análise , Solubilidade , Amido/química , Amido/metabolismo , Suínos , Termodinâmica , Difração de Raios X , alfa-Amilases/metabolismo
19.
Molecules ; 22(9)2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-28895935

RESUMO

The molecular structural parameters of six normal rice starches with different amylose contents were investigated through their iodine absorption spectra and gel permeation chromatography of fully branched and debranched starches. The thermal and digestion properties of starches were also determined and their relationships with molecular structural parameters were analyzed. Results showed that the molecular structural parameters of maximum absorption wavelength, blue value (BV), optical density 620 nm/550 nm (OD 620/550), amylose, intermediate component, and amylopectin, including its short branch-chains, long branch-chains, and branching degree, had high correlation in different determining methods. The intermediate component of starch was significantly positively related to amylose and negatively related to amylopectin, and the amylopectin branching degree was significantly positively related to amylopectin content and negatively related to amylose content. The gelatinization temperatures and enthalpy of native starch were significantly positively related to BV, OD 620/550, and amylose content and negatively related to amylopectin short branch-chains. The gelatinization temperatures and enthalpy of retrograded starch were significantly negatively related to amylopectin branching degree. The digestions of gelatinized and retrograded starches were significantly negatively related to the BV, OD 620/550, amylose, and intermediate component and positively related to amylopectin and its short branch-chains and branching degree.


Assuntos
Oryza/química , Amido/química , Termodinâmica , Digestão , Estrutura Molecular , Peso Molecular , Análise Espectral
20.
J Plant Physiol ; 301: 154300, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38964046

RESUMO

FLO2 is involved in grain development and storage substance synthesis in rice, and therefore can regulate grain size and quality. In this study, we identified 4 new flo2 allelic mutants with nonsense and frameshift mutation in the exon of 6, 10, 11 and 21 and 5 new flo2 allelic mutants with alternative splicing and frameshift mutation at the splicing site of intron 13, 14, 16 and 17. Compared with wild-type rice, the outer endosperm of flo2 mutants was transparent, and the inner endosperm was floury. Different mutation sites and types of FLO2 significantly decreased kernel width, thickness and weight to some extent. The contents of storage protein, starch, amylose and amylopectin showed significant decrease at different levels among 9 flo2 mutants. The expressions of most storage protein synthesis genes and starch synthesis-related genes were significantly down-regulated, and exhibited different ranges of variation among different flo2 mutants. This study could add helpful information for the roles of flo2 alleles in rice quality regulation and provide abundant germplasm resources for rice quality breeding.


Assuntos
Alelos , Mutação , Oryza , Proteínas de Plantas , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Amido/metabolismo , Regulação da Expressão Gênica de Plantas , Endosperma/genética , Endosperma/metabolismo , Genes de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA