Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
RNA ; 17(6): 1025-31, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21467217

RESUMO

Reporter-based studies support inhibition of translation at the level of initiation as a substantial component of the miRNA mechanism, yet recent global analyses have suggested that they predominantly act through decreasing target mRNA stability. Cells commonly coexpress several processing isoforms of an mRNA, which may also differ in their regulatory untranslated regions (UTR). In particular, cancer cells are known to express high levels of short 3' UTR isoforms that evade miRNA-mediated regulation, whereas longer 3' UTRs predominate in nontransformed cells. To test whether mRNA isoform diversity can obscure detection of miRNA-mediated control at the level of translation, we assayed the responses of 11 endogenous let-7 targets to inactivation of this miRNA in HeLa cells, an intensively studied model system. We show that translational regulation in many cases appears to be modest when measuring the composite polysome profile of all extant isoforms of a given mRNA by density ultracentrifugation. In contrast, we saw clear effects at the level of translation initiation for multiple examples when selectively profiling mRNA isoforms carrying the 5' or 3' untranslated regions that were actually permissive to let-7 action, or when let-7 and a second targeting miRNA were jointly manipulated. Altogether, these results highlight a caveat to the mechanistic interpretation of data from global miRNA target analyses in transformed cells. Importantly, they reaffirm the importance of translational control as part of the miRNA mechanism in animal cells.


Assuntos
Regulação da Expressão Gênica , MicroRNAs/metabolismo , Biossíntese de Proteínas/genética , Regiões não Traduzidas , Regiões 3' não Traduzidas , Células HeLa , Humanos , MicroRNAs/genética , Isoformas de Proteínas/genética , Estabilidade de RNA , RNA Mensageiro/metabolismo , Transfecção
2.
PLoS One ; 7(2): e30933, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22319597

RESUMO

microRNAs (miRNAs) are critical to heart development and disease. Emerging research indicates that regulated precursor processing can give rise to an unexpected diversity of miRNA variants. We subjected small RNA from murine HL-1 cardiomyocyte cells to next generation sequencing to investigate the relevance of such diversity to cardiac biology. ∼40 million tags were mapped to known miRNA hairpin sequences as deposited in miRBase version 16, calling 403 generic miRNAs as appreciably expressed. Hairpin arm bias broadly agreed with miRBase annotation, although 44 miR* were unexpectedly abundant (>20% of tags); conversely, 33 -5p/-3p annotated hairpins were asymmetrically expressed. Overall, variability was infrequent at the 5' start but common at the 3' end of miRNAs (5.2% and 52.3% of tags, respectively). Nevertheless, 105 miRNAs showed marked 5' isomiR expression (>20% of tags). Among these was miR-133a, a miRNA with important cardiac functions, and we demonstrated differential mRNA targeting by two of its prevalent 5' isomiRs. Analyses of miRNA termini and base-pairing patterns around Drosha and Dicer cleavage regions confirmed the known bias towards uridine at the 5' most position of miRNAs, as well as supporting the thermodynamic asymmetry rule for miRNA strand selection and a role for local structural distortions in fine tuning miRNA processing. We further recorded appreciable expression of 5 novel miR*, 38 extreme variants and 8 antisense miRNAs. Analysis of genome-mapped tags revealed 147 novel candidate miRNAs. In summary, we revealed pronounced sequence diversity among cardiomyocyte miRNAs, knowledge of which will underpin future research into the mechanisms involved in miRNA biogenesis and, importantly, cardiac function, disease and therapy.


Assuntos
Variação Genética , MicroRNAs/genética , Miócitos Cardíacos , Animais , Sequência de Bases , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA