Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Arch Environ Contam Toxicol ; 76(2): 157-170, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30244305

RESUMO

East Dongting Lake and Hong Lake are two typical lakes in the middle watershed of the Yangtze River, China. The differences in the hydrological condition and human activities of the region may result in the differences in concentrations, distribution, and sources of contaminants. The levels, sources, distribution, and ecological risk of OHCs, including 15 OCPs, 7 PCBs, and 7 PBDEs in surface sediments and water from this region, were investigated. OCPs and PCBs were the predominant pollutants in water and sediments samples, respectively. Source analysis showed that HCHs, PBDEs, and PCBs were mainly from the historical input of commercial products, but there were recent discharges of DDT into the water. The spatial distribution of OHCs showed that higher levels of OHCs in sediments and water were found in the sampling sites far away from the estuary of Hong Lake, but such obvious distribution characteristic was not found in East Dongting Lake. TOC played a crucial role in the retention of OCPs in the sediments of Hong Lake, but significant correlation between TOC and OCPs for East Dongting Lake, TOC and PCBs or PBDEs for both lakes were not found. The possible adverse biological effects could be caused by OCPs residues in sediments of both lakes, and it was worse for Hong Lake. The noncarcinogenic and carcinogenic risk assessment of HCHs and DDTs indicated the water quality of both lakes was safe for bathing and drinking. The potential ecotoxicological risks of PBDEs and PCBs of both lakes were rather low.


Assuntos
Sedimentos Geológicos/análise , Lagos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Éteres Difenil Halogenados/análise , Humanos , Hidrocarbonetos Clorados/análise , Bifenilos Policlorados/análise , Qualidade da Água
2.
J Agric Food Chem ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38832813

RESUMO

Nanoplastics (NPs) are emerging contaminants having persistent nature, diverse ecological impacts, and potential food safety risks. Here, we examined the ecotoxicity of 80 nm polystyrene nanoplastics (PS-NPs) at environmentally relevant concentrations (ERCs, 10 and 100 µg/L), and sublethal concentrations (SLCs, 500 and 2500 µg/L) in Magallana hongkongensis. Results showed that SLCs significantly (p < 0.05) increased superoxide dismutase (SOD), catalase (CAT), and alkaline phosphatase (AKP) activities and altered tnfα, cat, gst, sod, and se-gpx genetic expressions. Further, PS-NP exposure at both levels reduced beneficial bacteria and increased potentially pathogenic bacteria in the gut. In transcriptomic analysis, 5118 and 4180 differentially expressed genes (DEGs) were identified at ERCs, while 5665 and 4817 DEGs were found at SLCs, respectively. Upregulated DEGs enriched lysosomes, ABC transporters, and apoptosis pathways, while downregulated DEGs enriched ribosomal pathways. Overall, ERCs significantly altered gut microbiota and transcriptomic responses, while SLCs, in addition, also impacted the antioxidant and immune systems.

3.
Environ Technol ; 43(27): 4306-4314, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34157955

RESUMO

Excessive F- in drinking water due to natural and anthropogenic activities is a serious health hazard affecting humans worldwide. In this study, a comparative assessment was made of eight mineral-based materials with advantageous structural properties for F- uptake: layered-double-hydroxides (LDHs), geopolymers, softening pellets and struvite. These materials are considered low-cost, for being either a waste or by-product, or can be locally-sourced. It can be concluded that Ca-based materials showed the strongest affinity for F- (Ca-Al-CO3 LDHs, slag-based geopolymer, softening pellets). The Langmuir adsorption capacity of Ca-Al-CO3 LDHs, slag-based geopolymer and softening pellets was observed to be 20.83, 5.23 and 1.20 mg/g, respectively. The main mechanism of F- uptake on Ca-Al-CO3 LDHs, Mg-Al-Cl LDHs, slag-based geopolymers and softening pellets was found to be sorption at low initial F- concentrations (<10 mg/L) whereas precipitation as CaF2 is proposed to play a major role at higher initial F- concentrations (>20 mg/L). Although the softening pellets had the highest Ca-content (96-97%; XRF), their dense structure and consequent low BET surface area (2-3 m2/g), resulted in poorer performance than the Ca-based LDHs and slag-based geopolymers. Nevertheless, geopolymers, as well as struvite, were not considered to be of interest for application in water treatment, as they would need modification due to their poor stability and/or F- leaching.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Humanos , Fluoretos , Estruvita , Poluentes Químicos da Água/química , Hidróxidos/química , Purificação da Água/métodos , Adsorção
4.
Chemosphere ; 243: 125307, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31733543

RESUMO

In this study, F- removal by Ca-Al-CO3 layered double hydroxides (LDHs) was investigated at environmentally-relevant concentration ranges (2-12 mg/L) to below the WHO guideline, with an emphasis on the effect of LDHs' modification, as well as the effects of initial F- concentration, adsorbent dose, pH, temperature and co-existing ions. Ca-Al-CO3 LDHs, either untreated, calcined or microwave treated, showed affinity for the removal of F- from synthetic groundwater with capacities of 6.7-8.4 mg F-/g LDHs at groundwater-relevant pH, with a higher F- removal capacity at lower pH (<8) and lower temperature (12 °C, as compared to 25 °C & 35 °C). Since calcination and microwave treatment resulted in only marginal defluorination improvements, using untreated LDHs appears the practically most feasible option. For the untreated LDHs, competition with Cl- and NO3- was not observed, whereas at higher HCO3- and SO42- concentrations (>250 mg/L) a slight reduction in F- removal was observed. This study indicates the potential of Ca-Al-CO3 LDHs as a cost-effective F- removal technology, particularly when locally sourced and in combination with low-cost pH correction.


Assuntos
Fluoretos/isolamento & purificação , Hidróxidos/química , Purificação da Água/métodos , Adsorção , Água Subterrânea/química , Cinética , Poluentes Químicos da Água/isolamento & purificação
5.
Environ Sci Pollut Res Int ; 24(2): 1975-1986, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27798806

RESUMO

Surface water quality closely correlating with human health suffered increasing organochlorine pesticide (OCP) pollution due to the intensive anthropogenic activities in megacities. In the present study, 112 water samples collected from 14 lakes and 11 drinking water source sites in Wuhan were detected for the residues of OCPs in November 2013 and July 2014, respectively. The ΣOCPs ranged from 5.61 to 13.62 ng L-1 in summer with the maximum value in Yezhi Lake and 3.18 to 7.73 ng L-1 in winter with the highest concentration in Yandong Lake. Except dichlorodiphenyltrichloroethanes (DDTs), OCP concentrations in summer were significantly higher than those in winter mostly due to the non-point source pollution including land runoff in summer. Source apportionment of hexachlorocyclohexanes (HCHs) and DDTs revealed the historical use of technical HCH and lindane and the new input of DDT, respectively. The spatial distribution of OCPs was not uniform in the surface water of Wuhan because of the significant influence of land development and fishery. The risk assessments showed the heptachlor, and heptachlor epoxide in most sampling sites exceeded the threshold set by the European Union, indicating the possible adverse effects for aquatic lives. Negligible non-carcinogenic risks for drinking and bathing as well as carcinogenic risks for bathing were found in the surface water. However, the total carcinogenic risks of all OCPs (∑Rs) caused by drinking in summer were higher than the safe level of 10-7 in all sampling sites. It was implied that the surface water in Wuhan was not safe for directly drinking without effective purification.


Assuntos
Água Potável/análise , Hidrocarbonetos Clorados/análise , Lagos/análise , Resíduos de Praguicidas/análise , Poluentes Químicos da Água/análise , China , Humanos , Medição de Risco , Estações do Ano , Purificação da Água , Qualidade da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA