Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Mol Med ; 28(10): e18411, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38780505

RESUMO

Hepatocellular carcinoma (HCC) represents a significant global health burden, necessitating an in-depth exploration of its molecular underpinnings to facilitate the development of effective therapeutic strategies. This investigation delves into the complex role of long non-coding RNAs (lncRNAs) in the modulation of hypoxia-induced HCC progression, with a specific emphasis on delineating and functionally characterizing the novel KLF4/Lnc18q22.2/ULBP3 axis. To elucidate the effects of hypoxic conditions on HCC cells, we established in vitro models under both normoxic and hypoxic environments, followed by lncRNA microarray analyses. Among the lncRNAs identified, Lnc18q22.2 was found to be significantly upregulated in HCC cells subjected to hypoxia. Subsequent investigations affirmed the oncogenic role of Lnc18q22.2, highlighting its critical function in augmenting HCC cell proliferation and migration. Further examination disclosed that Kruppel-like factor 4 (KLF4) transcriptionally governs Lnc18q22.2 expression in HCC cells, particularly under hypoxic stress. KLF4 subsequently enhances the tumorigenic capabilities of HCC cells through the modulation of Lnc18q22.2 expression. Advancing downstream in the molecular cascade, our study elucidates a novel interaction between Lnc18q22.2 and UL16-binding protein 3 (ULBP3), culminating in the stabilization of ULBP3 protein expression. Notably, ULBP3 was identified as a pivotal element, exerting dual functions by facilitating HCC tumorigenesis and mitigating immune evasion in hypoxia-exposed HCC cells. The comprehensive insights gained from our research delineate a hitherto unidentified KLF4/Lnc18q22.2/ULBP3 axis integral to the understanding of HCC tumorigenesis and immune escape under hypoxic conditions. This newly unveiled molecular pathway not only enriches our understanding of hypoxia-induced HCC progression but also presents novel avenues for therapeutic intervention.


Assuntos
Carcinogênese , Carcinoma Hepatocelular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like , Neoplasias Hepáticas , RNA Longo não Codificante , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/imunologia , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/imunologia , RNA Longo não Codificante/genética , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Proliferação de Células/genética , Linhagem Celular Tumoral , Carcinogênese/genética , Carcinogênese/patologia , Animais , Movimento Celular/genética , Evasão Tumoral/genética , Camundongos , Hipóxia Celular/genética , Transdução de Sinais
2.
J Cell Mol Med ; 28(12): e18468, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38923705

RESUMO

IL33 plays an important role in cancer. However, the role of liver cancer remains unclear. Open-accessed data was obtained from the Cancer Genome Atlas, Xena, and TISCH databases. Different algorithms and R packages are used to perform various analyses. Here, in our comprehensive study on IL33 in HCC, we observed its differential expression across cancers, implicating its role in cancer development. The single-cell analysis highlighted its primary expression in endothelial cells, unveiling correlations within the HCC microenvironment. Also, the expression level of IL33 was correlated with patients survival, emphasizing its potential prognostic value. Biological enrichment analyses revealed associations with stem cell division, angiogenesis, and inflammatory response. IL33's impact on the immune microenvironment showcased correlations with diverse immune cells. Genomic features and drug sensitivity analyses provided insights into IL33's broader implications. In a pan-cancer context, IL33 emerged as a potential tumour-inhibitor, influencing immune-related molecules. This study significantly advances our understanding of IL33 in cancer biology. IL33 exhibited differential expression across cancers, particularly in endothelial cells within the HCC microenvironment. IL33 is correlated with the survival of HCC patients, indicating potential prognostic value and highlighting its broader implications in cancer biology.


Assuntos
Carcinoma Hepatocelular , Regulação Neoplásica da Expressão Gênica , Interleucina-33 , Neoplasias Hepáticas , Microambiente Tumoral , Humanos , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/mortalidade , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/metabolismo , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Prognóstico , Interleucina-33/metabolismo , Interleucina-33/genética , Biomarcadores Tumorais/genética
3.
J Appl Toxicol ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700028

RESUMO

This study demonstrated that both copper oxide nanoparticles (CuO-NPs) and copper nanoparticles (Cu-NPs) can cause swelling, inflammation, and cause damage to the mitochondria of alveolar type II epithelial cells in mice. Cellular examinations indicated that both CuO-NPs and Cu-NPs can reduce cell viability and harm the mitochondria of human bronchial epithelial cells, particularly Beas-2B cells. However, it is clear that CuO-NPs exhibit a more pronounced detrimental effect compared with Cu-NPs. Using bafilomycin A1 (Bafi A1), an inhibitor of lysosomal acidification, was found to enhance cell viability and alleviate mitochondrial damage caused by CuO-NPs. Additionally, Bafi A1 also reduces the accumulation of dihydrolipoamide S-acetyltransferase (DLAT), a marker for mitochondrial protein toxicity, induced by CuO-NPs. This observation suggests that the toxicity of CuO-NPs depends on the distribution of copper particles within cells, a process facilitated by the acidic environment of lysosomes. The release of copper ions is thought to be triggered by the acidic conditions within lysosomes, which aligns with the lysosomal Trojan horse mechanism. However, this association does not seem to be evident with Cu-NPs.

4.
BMC Cardiovasc Disord ; 23(1): 61, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732698

RESUMO

BACKGROUND: ST-segment elevation (STE) represents a repolarization dispersion marker underlying arrhythmogenesis in ST-segment elevation myocardial infarction (STEMI); however, its value for predicting malignant ventricular arrhythmia events (MVAEs) remains uncertain. METHODS: In total, 285 patients with STEMI and those with or without MVAEs who presented within 6 h of symptom onset were enrolled. The relationships between STE and clinical characteristics of MVAEs (defined as ventricular tachycardia or ventricular fibrillation) were analyzed using t-test, chi-square test, binary multivariate logistic regression, and receiver operating characteristic curve analysis. RESULTS: Patients with STEMI and MVAEs had a shorter time from symptom onset to balloon time (p = 0.0285) and greater STE (p < 0.01) than those without MVAEs. The symptom-to-balloon time, age, and STE were associated with MVAEs after stepwise regression analysis in all cases. Only STE was significantly associated with the occurrence of MVAEs (all, p < 0.01). The area under the curve (AUC) of STE for predicting MVAEs was 0.905, and the cut-off value was 4.5 mV. When only infarct-related arteries were included in the analysis, the AUC of the left anterior descending artery was 0.925 with a cut-off value of 4.5 mV, that of the right coronary artery was 0.915 with a cut-off value of 4.5 mV, and that of the left circumflex artery was 0.929 with a cut-off value of 4.0 mV. CONCLUSIONS: In patients with STEMI presenting within 6 h of symptom onset, age, symptom-to-balloon time, and STE were the main predictors for MVAEs. However, among these, STE was the strongest predictor for MVAEs and was an index for repolarization dispersion of cardiomyocytes in infarcted and non-infarcted areas.


Assuntos
Infarto Miocárdico de Parede Anterior , Intervenção Coronária Percutânea , Infarto do Miocárdio com Supradesnível do Segmento ST , Humanos , Infarto do Miocárdio com Supradesnível do Segmento ST/complicações , Infarto do Miocárdio com Supradesnível do Segmento ST/diagnóstico , Infarto do Miocárdio com Supradesnível do Segmento ST/terapia , Eletrocardiografia , Intervenção Coronária Percutânea/efeitos adversos , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/etiologia , Fibrilação Ventricular/diagnóstico , Fibrilação Ventricular/etiologia , Infarto Miocárdico de Parede Anterior/etiologia
5.
Molecules ; 26(7)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806187

RESUMO

Abelmoschus manihot (L.) Medic (AM), called Huangshukui in Chinese, is a widely used medicinal plant. Each part of AM has medicinal value, including Abelmoschi Radix (AR), Abelmoschi Herba (AH), Abelmoschi Folium (AF), Abelmoschi Corolla (AC), and Abelmoschi Semen (AS). However, only AC is documented in the Chinese Pharmacopoeia. In order to investigate whether there is any difference between AC and the other parts of AM, an analytical method based on ultra-fast performance liquid chromatography coupled with triple quadrupole-linear ion trap mass spectrometry (UFLC-QTRAP-MS/MS) was established for the simultaneous determination of 35 constituents in different parts of AM. Moreover, principal components analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were applied to classify and evaluate the different parts of AM based on the content of the 35 constituents. The total contents of the 35 constituents in AC were significantly higher than in the other parts of AM and the results revealed significant differences between AC and the other parts of AM. Eight constituents were remarkably related to the sample classifications. This research does not just provide the basic information for revealing the distribution patterns in different parts of AM from the same origin, but also complements some of the scientific data for the comprehensive quality evaluation of AC.


Assuntos
Abelmoschus/química , Compostos Fitoquímicos/análise , Extratos Vegetais/análise , Folhas de Planta/química , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Extratos Vegetais/química
6.
Molecules ; 26(21)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34770782

RESUMO

Taxilli Herba (TH) is a well-known traditional Chinese medicine (TCM) with a wide range of clinical application. However, there is a lack of comprehensive research on its chemical composition in recent years. At the same time, Taxillus chinensis (DC) Danser is a semi parasitic plant with abundant hosts, and its chemical constituents varies due to hosts. In this study, the characterization of chemical constituents in TH was analyzed by ultra-fast liquid chromatography coupled with triple quadrupole-time of flight tandem mass spectrometry (UFLC-Triple TOF-MS/MS). Moreover, partial least squares discriminant analysis (PLS-DA) was applied to reveal the differential constituents in TH from different hosts based on the qualitative information of the chemical constituents. Results showed that 73 constituents in TH were identified or tentatively presumed, including flavonoids, phenolic acids and glycosides, and others; meanwhile, the fragmentation pathways of different types of compounds were preliminarily deduced by the fragmentation behavior of the major constituents. In addition, 23 differential characteristic constituents were screened based on variable importance in projection (VIP) and p-value. Among them, quercetin 3-O-ß-D-glucuronide, quercitrin and hyperoside were common differential constituents. Our research will contribute to comprehensive evaluation and intrinsic quality control of TH, and provide a scientific basis for the variety identification of medicinal materials from different hosts.


Assuntos
Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/análise , Medicamentos de Ervas Chinesas/química , Loranthaceae/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Fracionamento Químico , Cromatografia Líquida de Alta Pressão/métodos , Flavonoides , Glicosídeos , Estrutura Molecular , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
7.
Molecules ; 26(24)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34946568

RESUMO

Taxilli Herba (TAXH) is an important traditional Chinese medicine with a long history, dating from the Eastern Han Dynasty to the present times. However, the active constituents in it that parasitize different hosts vary, affecting its clinical efficacy. Given the complexity of the host origins, evaluating the quality of TAXH is critical to ensure the safety and effectiveness of clinical medication. In the present study, a quantitative method based on ultra-fast liquid chromatography tandem triple quadrupole mass spectrometry (UFLC-QTRAP-MS/MS) was established, which simultaneously determined the content of 33 active constituents, including 12 flavonoids, 4 organic acids, 12 amino acids, and 5 nucleosides in 45 samples. Orthogonal partial least squares discriminant analysis (OPLS-DA) was employed to classify and distinguish between TAXH and its adulterants, Tolypanthi Herba (TOLH). A hierarchical clustering analysis (HCA) was conducted combined with a heatmap to visually observe the distribution regularity of 33 constituents in each sample. Furthermore, gray relational analysis (GRA) was applied to evaluate the quality of samples to get the optimal host. The results demonstrated that TAXH excelled TOLH in quality as a whole. The quality of TAXH parasitizing Morus alba was also better, while those that were parasitic on Cinnamomum camphora and Glyptostrobus pensilis had relatively poor quality. This study may provide comprehensive information that is necessary for quality control and supply a scientific basis for further exploring the quality formation mechanism of TAXH.


Assuntos
Medicamentos de Ervas Chinesas/análise , Aminoácidos/análise , Cromatografia Líquida de Alta Pressão , Flavonoides/análise , Medicina Tradicional Chinesa , Análise Multivariada , Nucleosídeos/análise , Controle de Qualidade , Espectrometria de Massas em Tandem
8.
Zhongguo Zhong Yao Za Zhi ; 46(10): 2527-2536, 2021 May.
Artigo em Zh | MEDLINE | ID: mdl-34047100

RESUMO

A comprehensive analytical method based on ultra-fast liquid chromatography coupled with triple quadrupole/linear ion trap tandem mass spectrometry(UFLC-QTRAP-MS/MS) was established for simultaneous determination of the content of 38 active components in Abelmoschi Corolla, including flavonoids, organic acids, nucleosides and amino acids, so as to investigate the effects of different harvesting and processing methods on multi-active components in Abelmoschi Corolla. The chromatographic separation was performed on a XBridg®C_(18) column(4.6 mm×100 mm, 3.5 µm) with(0.1% formic acid water) methanol-acetonitrile(1∶1) as the mobile phase for gradient elution at 30 ℃. The flow rate was 0.5 mL·min~(-1). The components were detected in a multiple-reaction monitoring(MRM) mode. The gray relational analysis(GRA) was used to comprehensively evaluate the multiple active components of Abelmoschi Corolla at different harvesting times and drying temperatures. The results showed that 38 components had a good linearity with correlation coefficients all above 0.999 0. The method featured a good precision, repeatability and stability with the relative stan-dard deviations(RSDs) of less than 5.0%. Recoveries ranged from 98.06% to 104.4% with RSD between 0.22% and 4.9%. The results of GRA indicated that a better quality in the samples collected on September 9 th. Samples dried at 90 ℃ had a better quality. The established method is accurate and reliable, and can be used to assess the internal quality of Abelmoschi Corolla. This study can provide basic materials for determining appropriate harvesting time and processing method of Abelmoschi Corolla.


Assuntos
Nucleosídeos , Espectrometria de Massas em Tandem , Aminoácidos , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida
9.
Phytochem Anal ; 31(6): 786-800, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32342594

RESUMO

INTRODUCTION: Lonicera japonica Thunb. is an economically important species of honeysuckle belonging to the Caprifoliaceae family. All aerial parts of L. japonica (leaf, flower bud, flower, and caulis) are used as herbal remedies in traditional Chinese medicine. The application of plant metabolomics to the study of L. japonica provides the potential for identifying the phytochemical composition and useful chemical markers of the plant. OBJECTIVE: To develop a strategy integrating metabolic profiling and partial least squares discriminant analysis (PLS-DA) to separate the aerial parts of L. japonica based on the occurrence of chemical markers. METHODOLOGY: The two-part strategy consisted of (1) ultra-fast liquid chromatography coupled with triple quadrupole-time of flight tandem mass spectrometry (UFLC-triple TOF-MS/MS), (2) PLS-DA, which was applied to distinguish between the different aerial parts and reveal their differential characteristic metabolites. RESULTS: A total of 71 metabolites were identified from samples, and eight candidate compounds were identified (lonicerin, kaempferol-3-O-rutinoside, loganin, isochlorogenic acid B, isochlorogenic acid C, secologanic acid, luteoloside, astragalin) as optimal chemical markers based on variable importance in projection (VIP) and p-value. The relative contents of eight candidate compounds were compared based on their peak intensities. CONCLUSION: This study established an efficient strategy for exploring metabolite profiling and defining chemical markers among the different aerial parts of L. japonica, and laid the foundation for elucidating the phytochemical differences in efficacy between Lonicerae Japonicae Flos (LJF) and Lonicerae Japonicae Caulis (LJC). Our findings also indicate that the leaves of L. japonica leaf could be used as an alternative medicinal resource for LJF and provide a reference for comprehensive exploitation and utilisation of L. japonica resources.


Assuntos
Lonicera , Cromatografia Líquida de Alta Pressão , Análise Discriminante , Análise dos Mínimos Quadrados , Espectrometria de Massas em Tandem
10.
Molecules ; 25(2)2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31947701

RESUMO

Forsythiae Fructus (FF) is a widely used folk medicine in China, Japan, and Korea. The distribution of bioactive constituents throughout the fruit segments has rarely been addressed, although mounting evidence suggests that plant secondary metabolites are synthesized and distributed regularly. The phytochemical profiles of three segments of FF (pericarp, stalk and seed) were firstly revealed by liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based quantitative analysis of twenty-one bioactive constituents, including three phenylethanoid glycosides, five lignans, eight flavonoids, and five phenolic acids to explore the spatial distribution of bioactive constituents. Furthermore, the hierarchical clustering analysis (HCA) and one-way analysis of variance (one-way ANOVA) were conducted to visualize and verify the distribution regularity of twenty-one analytes among three segments. The results showed that phytochemical profiles of the three segments were similar, i.e., phenylethanoid glycosides covering the most part were the predominant compounds, followed by lignans, flavonoids and phenolic acids. Nevertheless, the abundance of twenty-one bioactive constituents among three segments was different. Specifically, phenylethanoid glycosides were highly expressed in the seed; lignans were primarily enriched in the stalk; flavonoids were largely concentrated in the pericarp, while the contents of phenolic acids showed no much difference among various segments. The research improves our understanding of distribution patterns for bioactive constituents in FF, and also complements some scientific data for further exploring the quality formation mechanism of FF.


Assuntos
Flavonoides/metabolismo , Forsythia/metabolismo , Frutas/metabolismo , Glicosídeos/metabolismo , Extratos Vegetais/metabolismo , Caules de Planta/metabolismo , Sementes/metabolismo , Flavonoides/análise , Glicosídeos/análise , Extratos Vegetais/análise
11.
Zhongguo Zhong Yao Za Zhi ; 45(3): 584-595, 2020 Feb.
Artigo em Zh | MEDLINE | ID: mdl-32237517

RESUMO

A method was established for simultaneous determination of 21 active constituents including flavanols, isoflavones, flavonols, dihydroflavones, dihydroflavonols, chalcones, pterocarpan, anthocyanidins and phenolic acids in Spatholobi Caulis by ultra fast liquid chromatography with triple quadrupole linear ion trap mass spectrometry(UFLC-QTRAP-MS/MS). Then, it was employed to analyze and evaluate the dynamic accumulation of multiple bioactive constituents in Spatholobi Caulis. The chromatographic separation was performed on a XBridge®C_(18)(4.6 mm×100 mm, 3.5 µm) at 30 ℃ with a gradient elution of 0.3% formic acid aqueous solution-methanol, and the flow rate was 0.8 mL·min~(-1), using multiple-reaction monitoring(MRM) mode. A comprehensive evaluation of the multiple bioactive constituents was carried out by gray correlation analysis(GRA). The 21 target components showed good linearity(r>0.999 0) in the range of the tested concentrations. The average recovery rates of the 21 components were from 97.46% to 103.6% with relative standard deviations less than 5.0%. There were differences in the contents of 21 components in Spatholobi Caulis at diffe-rent harvest periods. Spatholobi Caulis had high quality from early November to early December, which is consistent with the local tradi-tional harvest period. This study reveals the rule of the dynamic accumulation of 21 components in Spatholobi Caulis and provides basic information for the suitable harvest time. At the same time, it provides a new method reference for the comprehensive evaluation of the internal quality of Spatholobi Caulis.


Assuntos
Fabaceae/química , Compostos Fitoquímicos/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Caules de Planta/química , Plantas Medicinais/química , Espectrometria de Massas em Tandem
12.
Zhongguo Zhong Yao Za Zhi ; 45(6): 1272-1278, 2020 Mar.
Artigo em Zh | MEDLINE | ID: mdl-32281336

RESUMO

Molecular biology is a new subject that clarifies the phenomena and nature of life at the molecular level. Its development provides new biotechnology and methods for the study of traditional pharmacognosy. The formation of molecular biology has brought the development of pharmacognosy into a new era of gene research. Lonicerae Japonicae Flos is a classical Chinese medicine. Many scholars of home and abroad have carried out relevant studies on its molecular biology on the basis of the in-depth study with traditional methods, and have achieved certain results. In order to provide references on the method, technical for promoting the modernization of Lonicerae Japonicae Flos, and the development, protection, and utilization of other traditional Chinese medicine resources. This article summarized the application status of molecular biology methods and techniques on the identification, biosynthesis of active constituents, and molecular mechanism of secondary metabolite under stress conditions of Lonicerae Japonicae Flos in recent years. In hybridization technology of tag(RFLP), molecular markers based on PCR(RAPD, AFLP, SSR and ISSR), based on DNA sequence analysis of SNP and DNA barcode for the variety identification, diagnosis, identification of Lonicerae Japonicae Flos, and so forth in detail. At the same time, it is proposed that multi-omics technology can be used to build systems biology technology and platforms, and establish related models of secondary metabolite biosynthesis, so as to deepen acknowledge the molecular mechanism of the active component biosynthesis of Lonicerae Japonicae Flos and the accumulation of metabolites, life activities of other medicinal plants under adverse environment, then to regulate them.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Lonicera/química , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Cromatografia Líquida de Alta Pressão , Código de Barras de DNA Taxonômico , Medicina Tradicional Chinesa , Repetições de Microssatélites , Plantas Medicinais/química , Polimorfismo de Fragmento de Restrição , Polimorfismo de Nucleotídeo Único , Técnica de Amplificação ao Acaso de DNA Polimórfico , Metabolismo Secundário
13.
Molecules ; 24(18)2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31487946

RESUMO

Ophiopogonis Radix, also known as Mai-dong in Chinese, was a commonly used traditional Chinese medicine (TCM) and functional health food. Two products of Ophiopogonis Radix are largely produced in the Sichuan and Zhejiang province, which are called "Chuan maidong (CMD)" and "Zhe maidong (ZMD)" respectively. To distinguish and evaluate the quality of CMD and ZMD, an analytical method based on ultra-fast performance liquid chromatography coupled with triple quadrupole-linear ion trap mass spectrometry (UFLC-QTRAP-MS/MS) was established for simultaneous determination of 32 constituents including 4 steroidal saponins, 3 homisoflavonoids, 15 amino acids, and 10 nucleosides in 27 Mai-dong samples from Sichuan and Zhejiang. Furthermore, principal components analysis (PCA), partial least squares discriminant analysis (PLS-DA), t-test, and grey relational analysis (GRA) were applied to discriminate and evaluate the samples from Sichuan and Zhejiang based on the contents of 32 constituents. The results demonstrated that the bioactive constituents in CMD and ZMD were significantly different, and CMD performed better in the quality assessment than ZMD. This study not only provides a basic information for differentiating CMD and ZMD, but offers a new insight into comprehensive evaluation and quality control of Ophiopogonis Radix from two different producing areas.


Assuntos
Acanthaceae/química , Medicina Tradicional Chinesa/normas , Cromatografia Líquida de Alta Pressão , Análise Discriminante , Geografia , Controle de Qualidade , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem
14.
Molecules ; 24(10)2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31137485

RESUMO

Lonicerae japonicae flos (LJF) and Lonicerae japonicae caulis (LJC) are derived from different parts of Lonicera japonica Thunb. (Caprifoliaceae), and have been used as herbal remedies to treat various diseases for thousands of years with confirmed curative effects. However, little attention has been paid to illustrating the differences in efficacy from the perspective of phytochemistry. In the present study, a simultaneous determination of 47 bioactive constituents, including 12 organic acids, 12 flavonoids, six iridoids, 13 amino acids and four nucleosides in 44 batches of LJF and LJC samples from different habitats and commercial herbs was established based on ultra-fast liquid chromatography tandem triple quadrupole mass spectrometry (UFLC-QTRAP-MS/MS). Moreover, principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA) and t-test were then performed to classify and reveal the differential compositions of LJF and LJC according to the content of the tested constituents. The results demonstrated that the types and contents of chemical components (e.g., isochlorogenic acid A, chlorogenic acid, neochlorogenic acid, quinic acid, secologanic acid, luteoloside, loganin, secoxyloganin, morroniside and L-isoleucine) were significantly different, which may lead to the classification and the differences in efficacy of LJF and LJC. Our findings not only provide a basis for the comprehensive evaluation and intrinsic quality control of LJF and LJC, but also pave the way for discovering the material basis contributing to the different properties and efficacies of the two medicinal materials at the phytochemical level.


Assuntos
Flores/química , Lonicera/química , Compostos Fitoquímicos/análise , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão , Análise Discriminante , Análise dos Mínimos Quadrados , Limite de Detecção , Análise Multivariada , Compostos Fitoquímicos/isolamento & purificação , Análise de Componente Principal , Análise de Regressão , Fatores de Tempo
15.
Molecules ; 24(20)2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31614687

RESUMO

The demand for licorice and its natural product derivatives in domestic and foreign market is considerably huge. The core production areas of licorice are covered with salinity and drought land in northwestern China. Studies have shown that suitable environmental stress can promote the accumulation of glycyrrhizin and liquiritin to improve its quality as medicinal materials. However, there are few reports on other bioactive constituents of licorice, not to mention their dynamic accumulation under stressed conditions. To explore the quality formation of licorice from the perspective of salt influence, a reliable method based on ultra-fast liquid chromatography tandem triple quadrupole mass spectrometry (UFLC-MS/MS) was established for simultaneous determination of sixteen bioactive constituents, including triterpenoids, flavonoids, chalcones and their glycosides. Physiological experiments were performed to investigate salt tolerance of licorice under different salinity treatments. The expressions of crucial genes (bAS and CHS), key enzymes of triterpenoid and flavonoid synthesis, were also tested by qRT-PCR. Our study found that 50 mM NaCl treatment (low stress) was the most favorable to promote the accumulation of bioactive constituents in the long term, without harming the plants. Flavonoid accumulation of non-stressed and low-stressed groups became different in the initial synthesis stage, and glycosyltransferases may have great influence on their downstream synthesis. Furthermore, bAS and CHS also showed higher levels in low-stressed licorice at harvest time. This work provides valuable information on dynamic variations in multiple bioactive constituents in licorice treated by salt and insight into its quality formation under stressed conditions.


Assuntos
Medicamentos de Ervas Chinesas/química , Flavonoides/química , Glycyrrhiza/química , Extratos Vegetais/química , Chalconas/química , Chalconas/metabolismo , Cromatografia Líquida , Medicamentos de Ervas Chinesas/metabolismo , Flavanonas/química , Flavanonas/metabolismo , Flavonoides/metabolismo , Glucosídeos/química , Glucosídeos/metabolismo , Ácido Glicirrízico/química , Ácido Glicirrízico/metabolismo , Humanos , Extratos Vegetais/metabolismo , Extratos Vegetais/uso terapêutico , Folhas de Planta/química , Folhas de Planta/metabolismo , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Estresse Salino , Espectrometria de Massas em Tandem , Triterpenos/química , Triterpenos/metabolismo
16.
Molecules ; 25(1)2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31906156

RESUMO

Spatholobi Caulis (SC), the vine stem of Spatholobus suberectus Dunn, is a widely used traditional Chinese medicine (TCM) for the treatment of blood stasis syndrome and related diseases. Xylem and phloem are the main structures of SC and the color of xylem in SC is red brown or brown while the phloem with resin secretions is reddish brown to dark brown. They are alternately arranged in a plurality of concentric or eccentric rings. In order to investigate the distribution patterns of metabolites in xylem and phloem of SC, an analytical method based on UFLC-QTRAP-MS/MS was established for simultaneous determination of 22 constituents including four flavanols, nine isoflavones, two flavonols, two dihydroflavones, one flavanonol, one chalcone, one pterocarpan, one anthocyanidin and one phenolic acid in the samples (xylem and phloem) from Laos. Furthermore, according to the contents of 22 constituents, heat map, principal components analysis (PCA), orthogonal partial least squares discriminant analysis (OPLS-DA) and t-test were used to evaluate the samples and discover the differences between xylem and phloem of SC. The results indicated that the measured ingredients in xylem and phloem were significantly different. To be specific, the contents of flavonoids in xylem were higher than that in phloem, while the content of protocatechuic acid showed a contrary tendency. This study will not only reveal the distribution patterns of metabolites in xylem and phloem of SC but also facilitate further study on their quality formation.


Assuntos
Medicamentos de Ervas Chinesas/química , Fabaceae/química , Floema/química , Xilema/química , Cromatografia Líquida/métodos , Análise Discriminante , Medicamentos de Ervas Chinesas/isolamento & purificação , Medicamentos de Ervas Chinesas/metabolismo , Fabaceae/metabolismo , Flavonoides/análise , Hidroxibenzoatos/análise , Análise dos Mínimos Quadrados , Medicina Tradicional Chinesa , Análise Multivariada , Floema/metabolismo , Análise de Componente Principal , Espectrometria de Massas em Tandem/métodos , Xilema/metabolismo
17.
Comput Biol Med ; 174: 108415, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599070

RESUMO

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder that requires objective and accurate identification methods for effective early intervention. Previous population-based methods via functional connectivity (FC) analysis ignore the differences between positive and negative FCs, which provide the potential information complementarity. And they also require additional information to construct a pre-defined graph. Meanwhile, two challenging demand attentions are the imbalance of performance caused by the class distribution and the inherent heterogeneity of multi-site data. In this paper, we propose a novel dynamic graph Transformer network based on dual-view connectivity for ASD Identification. It is based on the Autoencoders, which regard the input feature as individual feature and without any inductive bias. First, a dual-view feature extractor is designed to extract individual and complementary information from positive and negative connectivity. Then Graph Transformer network is innovated with a hot plugging K-Nearest Neighbor (KNN) algorithm module which constructs a dynamic population graph without any additional information. Additionally, we introduce the PolyLoss function and the Vrex method to address the class imbalance and improve the model's generalizability. The evaluation experiment on 1102 subjects from the ABIDE I dataset demonstrates our method can achieve superior performance over several state-of-the-art methods and satisfying generalizability for ASD identification.


Assuntos
Algoritmos , Transtorno do Espectro Autista , Transtorno do Espectro Autista/fisiopatologia , Transtorno do Espectro Autista/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Criança , Masculino , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Redes Neurais de Computação , Feminino
18.
J Pharm Biomed Anal ; 245: 116197, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38723558

RESUMO

The dysregulated levels of branched chain amino acids (BCAA) contribute to renal fibrosis in chronic kidney disease (CKD), yet specific analysis of BCAA contents and how they are regulated still remain unclear. It is therefore of great scientific interest to understand BCAA catabolism in CKD and develop a sensitive method for simultaneous determination of individual BCAA and their metabolites branched chain α-ketoacids (BCKA). In this work, the important role of BCAA metabolism that drives renal fibrosis in the process of CKD was first revealed by using transcriptomics. The key target genes controlling BCAA metabolism were then validated, that is, mRNA levels of BCKDHA and BCKDHB, the regulating rate-limiting enzymes during BCAA metabolism were abnormally reduced by quantitative PCR (qPCR), and a similar drop-off trend of protein expression of BCKDH, HIBCH and MCCC2 that are closely related to BCAA metabolism was also confirmed by western blotting. Furthermore, we established a novel strategy that simultaneously determines 6 individual BCAA and BCKA in serum and tissue. The method based on dansylhydrazine derivatization and ultra-high performance liquid chromatography-tandem triple quadrupole mass spectrometry (UHPLC-QQQ-MS) achieved to simultaneously determine the contents of BCAA and BCKA, which is efficient and stable. Compared with normal rats, levels of BCAA including leucine, isoleucine and valine in serum and kidney of CKD rats was decreased, while BCKA including α-ketoisocaproic acid, α-ketomethylvaleric acid and α-ketoisovaleric acid was increased. Together, these findings revealed the abnormality of BCAA metabolism in driving the course of kidney fibrosis and CKD. Our current study sheds new light on changes in BCAA metabolism during CKD, and may facilitate development of drugs to treat CKD and renal fibrosis.


Assuntos
Aminoácidos de Cadeia Ramificada , Fibrose , Rim , Ratos Sprague-Dawley , Insuficiência Renal Crônica , Animais , Aminoácidos de Cadeia Ramificada/metabolismo , Ratos , Masculino , Cromatografia Líquida de Alta Pressão/métodos , Fibrose/metabolismo , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/genética , Rim/metabolismo , Rim/patologia , Cetoácidos/metabolismo , Transcriptoma , Espectrometria de Massas em Tandem/métodos , Perfilação da Expressão Gênica/métodos
19.
Front Oncol ; 13: 1109378, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37168372

RESUMO

Background: CCNF catalyzes the transfer of ubiquitin molecules from E2 ubiquitin-conjugating enzymes to target proteins, thereby regulating the G1/S or G2/M transition of tumor cells. Thus far, CCNF expression and its potential as a pancancer biomarker and immunotherapy target have not been reported. Methods: TCGA datasets and the R language were used to analyze the pancancer gene expression, protein expression, and methylation levels of CCNF; the relationship of CCNF expression with overall survival (OS), recurrence-free survival (RFS), immune matrix scores, sex and race; and the mechanisms for posttranscriptional regulation of CCNF. Results: CCNF expression analysis showed that CCNF mRNA expression was higher in cancer tissues than in normal tissues in the BRCA, CHOL, COAD, ESCA, HNSC, LUAD, LUSC, READ, STAD, and UCEC; CCNF protein expression was also high in many cancer tissues, indicating that it could be an important predictive factor for OS and RFS. CCNF overexpression may be caused by CCNF hypomethylation. CCNF expression was also found to be significantly different between patients grouped based on sex and race. Overexpression of CCNF reduces immune and stromal cell infiltration in many cancers. Posttranscriptional regulation analysis showed that miR-98-5p negatively regulates the expression of the CCNF gene. Conclusion: CCNF is overexpressed across cancers and is an adverse prognostic factor in terms of OS and RFS in many cancers; this phenomenon may be related to hypomethylation of the CCNF gene, which could lead to cancer progression and worsen prognosis. In addition, CCNF expression patterns were significantly different among patients grouped by sex and race. Its overexpression reduces immune and stromal cell infiltration. miR-98-5p negatively regulates CCNF gene expression. Hence, CCNF is a potential pancancer biomarker and immunotherapy target.

20.
Front Pharmacol ; 14: 1219866, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38027020

RESUMO

Background: Xiao-Er-An-Shen decoction (XEASD), a TCM formula composed of sixteen Chinese medicinal herbs, has been used to alleviate tic disorders (TD) in clinical practice for many years. However, the chemical basis underlying the therapeutic effects of XEASD in the treatment of TD remains unknown. Purpose: The present study aimed to determine the major chemical components of XEASD and its prototype compounds and metabolites in mice biological samples. Methods: The chemical constituents in XEASD were identified using ultra-high Performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS). Following this, XEASD was orally administered to mice, and samples of plasma, urine, feces, bile, and tissue were collected in order to identify effective compounds for the prevention or treatment of TD. Result: Of the total 184 compounds identified to be discriminated in the XEASD, comprising 44 flavonoids, 26 phenylpropanoids, 16 coumarins, 16 triterpenoids, 14 amino acids, 13 organic acids, 13 alkaloids, 13 ketones, 10 cyclic enol ether terpenes, 7 citrullines, 3 steroids, and 5 anthraquinones, and others. Furthermore, we summarized 54 prototype components and 78 metabolic products of XEASD, measured with biological samples, by estimating metabolic principal components, with four prototype compounds detected in plasma, 58 prototypes discriminated in urine, and 40 prototypes identified in feces. These results indicate that the Oroxylin A glucuronide from Citri reticulatae pericarpium (CRP) is a major compound with potential therapeutic effects identified in brain, while operating positive effect in inhibiting oxidative stress in vitro. Conclusion: In summary, our work delineates the chemical basis underlying the complexity of XEASD, providing insights into the therapeutic and metabolic pathways for TD. Various types of chemicals were explored in XEASD, including flavonoids, phenylpropanoids, coumarins, organic acids, triterpenoid saponins, and so on. This study can promote the further pharmacokinetic and pharmacological evaluation of XEASD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA