Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 94(16): 6394-6402, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35416029

RESUMO

A fully automated and label-free sample-to-answer white blood cell (WBC) cytometry platform for rapid immune state monitoring is demonstrated. The platform integrates (1) a WBC separation process using the multidimensional double spiral (MDDS) device and (2) an imaging process where images of the separated WBCs are captured and analyzed. Using the deep-learning-based image processing technique, we analyzed the captured bright-field images to classify the WBCs into their subtypes. Furthermore, in addition to cell classification, we can detect activation-induced morphological changes in WBCs for functional immune assessment, which could allow the early detection of various diseases. The integrated platform operates in a rapid (<30 min), fully automated, and label-free manner. The platform could provide a promising solution to future point-of-care WBC diagnostics applications.


Assuntos
Processamento de Imagem Assistida por Computador , Leucócitos
2.
Analyst ; 146(23): 7070-7086, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34761757

RESUMO

Cell separation has consistently been a pivotal technology of sample preparation in biomedical research. Compared with conventional bulky cell separation technologies applied in the clinic, cell separation based on microfluidics can accurately manipulate the displacement of liquid or cells at the microscale, which has great potential in point-of-care testing (POCT) applications due to small device size, low cost, low sample consumption, and high operating accuracy. Among various microfluidic cell separation technologies, inertial microfluidics has attracted great attention due to its simple structure and high throughput. In recent years, many researchers have explored the principles and applications of inertial microfluidics and developed different channel structures, including straight channels, curved channels, and multistage channels. However, the recently developed multistage channels have not been discussed and classified in detail compared with more widely discussed straight and curved channels. Therefore, in this review, a comprehensive and detailed review of recent progress in the multistage channel is presented. According to the channel structure, the inertial microfluidic separation technology is divided into (i) straight channel, (ii) curved channel, (iii) composite channel, and (iv) integrated device. The structural development of straight and curved channels is discussed in detail. And based on straight and curved channels, the multistage cell separation structures are reviewed, with a special focus on a variety of latest structures and related innovations of composite and integrated channels. Finally, the future prospects for the existing challenges in the development of inertial microfluidic cell separation technology are presented.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Separação Celular , Tecnologia
3.
Sensors (Basel) ; 21(3)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494493

RESUMO

The lensless on-chip microscope is an emerging technology in the recent decade that can realize the imaging and analysis of biological samples with a wide field-of-view without huge optical devices and any lenses. Because of its small size, low cost, and being easy to hold and operate, it can be used as an alternative tool for large microscopes in resource-poor or remote areas, which is of great significance for the diagnosis, treatment, and prevention of diseases. To improve the low-resolution characteristics of the existing lensless shadow imaging systems and to meet the high-resolution needs of point-of-care testing, here, we propose a high-precision on-chip microscope based on in-line holographic technology. We demonstrated the ability of the iterative phase recovery algorithm to recover sample information and evaluated it with image quality evaluation algorithms with or without reference. The results showed that the resolution of the holographic image after iterative phase recovery is 1.41 times that of traditional shadow imaging. Moreover, we used machine learning tools to identify and count the mixed samples of mouse ascites tumor cells and micro-particles that were iterative phase recovered. The results showed that the on-chip cell counter had high-precision counting characteristics as compared with manual counting of the microscope reference image. Therefore, the proposed high-precision lensless microscope on a chip based on in-line holographic imaging provides one promising solution for future point-of-care testing (POCT).

4.
Sensors (Basel) ; 21(2)2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33450866

RESUMO

The differential count of white blood cells (WBCs) is one widely used approach to assess the status of a patient's immune system. Currently, the main methods of differential WBC counting are manual counting and automatic instrument analysis with labeling preprocessing. But these two methods are complicated to operate and may interfere with the physiological states of cells. Therefore, we propose a deep learning-based method to perform label-free classification of three types of WBCs based on their morphologies to judge the activated or inactivated neutrophils. Over 90% accuracy was finally achieved by a pre-trained fine-tuning Resnet-50 network. This deep learning-based method for label-free WBC classification can tackle the problem of complex instrumental operation and interference of fluorescent labeling to the physiological states of the cells, which is promising for future point-of-care applications.


Assuntos
Aprendizado Profundo , Humanos , Contagem de Leucócitos , Redes Neurais de Computação , Neutrófilos
6.
Heliyon ; 10(11): e31496, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38845979

RESUMO

White blood cell (WBC) classification is a valuable diagnostic approach for identifying diseases. However, conventional methods for WBC detection, such as flow cytometers, have limitations in terms of their high cost, large system size, and laborious staining procedures. As a result, deep learning-based label-free WBC image analysis methods are gaining popularity. Nevertheless, most existing deep learning WBC classification techniques fail to effectively utilize the subtle differences in the internal structures of WBCs observed under a microscope. To address this issue, we propose a neural network with feature fusion in this study, which enables the detection of label-free WBCs. Unlike conventional convolutional neural networks (CNNs), our approach combines low-level features extracted by shallow layers with high-level features extracted by deep layers, generating fused features for accurate bright-field WBC identification. Our method achieves an accuracy of 80.3 % on the testing set, demonstrating a potential solution for deep-learning-based biomedical diagnoses. Considering the proposed method simplifies the cell detection process and eliminates the need for complex operations like fluorescent staining, we anticipate that this automatic and label-free WBC classification network could facilitate more precise and effective analysis, and it could contribute to the future adoption of miniatured flow cytometers for point-of-care (POC) diagnostics applications.

7.
IEEE Trans Biomed Eng ; 69(7): 2165-2175, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34951837

RESUMO

OBJECTIVE: Separation and detection of micro-particles or cells from bio-samples by point-of-care (POC) systems are critical for biomedical and healthcare diagnostic applications. Among various microfluidic separation techniques, acoustophoresis-based technique has the advantages of label-free and good biocompatibility. However, most of the existing separation techniques are bulky and require additional equipment for analysis. METHODS: We proposed a platform, which integrates an acoustophoresis-based separation device and a lensless imaging sensor into a compact standalone system to tackle this challenge. Standing Surface Acoustic Wave (SSAW) is utilized for label-free particle separation, while lensless imaging is employed for seamless particle detection and counting using self-developed dual-threshold motion detection algorithms. In particular, we specially optimized the design of microfluidic channel and interdigital transducers (IDTs) for higher performance bioparticle separation, designed a heat dissipation system for the suppression of fluid temperature, and proposed a novel frequency-temperature-curve based method to determine the appropriate signal driving frequency for IDTs. RESULTS: At 2 µL/min flow rate, separation efficiency of 93.52% and purity of 94.29% for 15 µm microbead were achieved in mixed 5µm and 15µm microbead solution at a 25 dBm RF driving power, and similar results for mixed 10 µm and 15 µm microbead solution. CONCLUSIONS: The results showed that the integrated platform has an excellent capability to seamlessly separate, distinguish, and count microbeads of different sizes. SIGNIFICANCE: Such a platform and the design methodologies offer a promising POC solution for label-free cell separation and detection in biomedical diagnostics.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Separação Celular , Desenho de Equipamento , Tamanho da Partícula , Som
8.
J Healthc Eng ; 2021: 1615192, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34552705

RESUMO

White blood cells (WBCs) play a significant role in the human immune system, and the content of various subtypes of WBCs is usually maintained within a certain range in the human body, while deviant levels are important warning signs for diseases. Hence, the detection and classification of WBCs is an essential diagnostic technique. However, traditional WBC classification technologies based on image processing usually need to segment the collected target cell images from the background. This preprocessing operation not only increases the workload but also heavily affects the classification quality and efficiency. Therefore, we proposed one high-efficiency object detection technology that combines the segmentation and recognition of targets into one step to realize the detection and classification of WBCs in an image at the same time. Two state-of-the-art object detection models, Faster RCNN and Yolov4, were employed and comparatively studied to classify neutrophils, eosinophils, monocytes, and lymphocytes on a balanced and enhanced Blood Cell Count Dataset (BCCD). Our experimental results showed that the Faster RCNN and Yolov4 based deep transfer learning models achieved classification accuracy rates of 96.25% and 95.75%, respectively. For the one-stage model, Yolov4, while ensuring more than 95% accuracy, its detection speed could reach 60 FPS, which showed better performance compared with the two-stage model, Faster RCNN. The high-efficiency object detection network that does not require cell presegmentation can remove the difficulty of image preprocessing and greatly improve the efficiency of the entire classification task, which provides a potential solution for future real-time point-of-care diagnostic systems.


Assuntos
Processamento de Imagem Assistida por Computador , Leucócitos , Eosinófilos , Humanos , Contagem de Leucócitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA