Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(18): 9894-9904, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37650631

RESUMO

CRISPR-Cas12a can induce nonspecific trans-cleavage of dsDNA substrate, including long and stable λ DNA. However, the mechanism behind this is still largely undetermined. In this study, we observed that while trans-activated Cas12a didn't cleave blunt-end dsDNA within a short reaction time, it could degrade dsDNA reporters with a short overhang. More interestingly, we discovered that the location of the overhang also affected the susceptibility of dsDNA substrate to trans-activated Cas12a. Cas12a trans-cleaved 3' overhang dsDNA substrates at least 3 times faster than 5' overhang substrates. We attributed this unique preference of overhang location to the directional trans-cleavage behavior of Cas12a, which may be governed by RuvC and Nuc domains. Utilizing this new finding, we designed a new hybrid DNA reporter as nonoptical substrate for the CRISPR-Cas12a detection platform, which sensitively detected ssDNA targets at sub picomolar level. This study not only unfolded new insight into the trans-cleavage behavior of Cas12a but also demonstrated a sensitive CRISPR-Cas12a assay by using a hybrid dsDNA reporter molecule.

2.
Gene Ther ; 31(5-6): 304-313, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38528117

RESUMO

Efficient manufacturing of recombinant Adeno-Associated Viral (rAAV) vectors to meet rising clinical demand remains a major hurdle. One of the most significant challenges is the generation of large amounts of empty capsids without the therapeutic genome. There is no standardized analytical method to accurately quantify the viral genes, and subsequently the empty-to-full ratio, making the manufacturing challenges even more complex. We propose the use of CRISPR diagnostics (CRISPR-Dx) as a robust and rapid approach to determine AAV genome titers. We designed and developed the CRISPR-AAV Evaluation (CRAAVE) assay to maximize sensitivity, minimize time-to-result, and provide a potentially universal design for quantifying multiple transgene constructs encapsidated within different AAV serotypes. We also demonstrate an on-chip CRAAVE assay with lyophilized reagents to minimize end user assay input. The CRAAVE assay was able to detect AAV titers as low as 7e7 vg/mL with high precision (<3% error) in quantifying unknown AAV titers when compared with conventional quantitative PCR (qPCR) method. The assay only requires 30 min of assay time, shortening the analytical workflow drastically. Our results suggest CRISPR-Dx could be a promising tool for efficient rAAV genome titer quantification and has the potential to revolutionize biomanufacturing process analytical technology (PAT).


Assuntos
Sistemas CRISPR-Cas , Dependovirus , Genoma Viral , Dependovirus/genética , Humanos , Vetores Genéticos/genética , Células HEK293
3.
Phytopathology ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829831

RESUMO

Rapid detection of plant diseases before they escalate can improve disease control. Our team has developed rapid nucleic acid extraction methods with microneedles (MN) and combined these with LAMP assays for pathogen detection in the field. In this work, we developed LAMP assays for early blight (Alternaria linariae, A. alternata, and A. solani) and bacterial spot of tomato (Xanthomonas perforans) and validated these LAMP assays and two previously developed LAMP assays for tomato spotted wilt virus and late blight. Tomato plants were inoculated and disease severity was measured. Extractions were performed using MN and LAMP assays were run in tubes (with hydroxynaphthol blue) on a heat block or on a newly designed microfluidic slide chip on a heat block or a slide heater. Fluorescence on the microfluidic chip slides was visualized using EvaGreen and photographed on a smartphone. Plants inoculated with X. perforans or tomato spotted wilt virus tested positive prior to visible disease symptoms, while P. infestans and A. linariae were detected at the time of visual disease symptoms. LAMP assays were more sensitive than PCR and the limit of detection was 1 pg of DNA for both A. linariae and X. perforans. The LAMP assay designed for early blight detected all three species of Alternaria that infect tomato and is thus an Alternaria spp. assay. This study demonstrates the utility of rapid MN extraction followed by LAMP on a microfluidic chip for rapid diagnosis of four important tomato pathogens.

4.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34021073

RESUMO

Plant disease outbreaks are increasing and threaten food security for the vulnerable in many areas of the world. Now a global human pandemic is threatening the health of millions on our planet. A stable, nutritious food supply will be needed to lift people out of poverty and improve health outcomes. Plant diseases, both endemic and recently emerging, are spreading and exacerbated by climate change, transmission with global food trade networks, pathogen spillover, and evolution of new pathogen lineages. In order to tackle these grand challenges, a new set of tools that include disease surveillance and improved detection technologies including pathogen sensors and predictive modeling and data analytics are needed to prevent future outbreaks. Herein, we describe an integrated research agenda that could help mitigate future plant disease pandemics.


Assuntos
Mudança Climática , Ecossistema , Segurança Alimentar , Doenças das Plantas , Humanos
5.
Angew Chem Int Ed Engl ; 62(17): e202214987, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36710268

RESUMO

Polymerase chain reaction (PCR)-based nucleic acid testing has played a critical role in disease diagnostics, pathogen surveillance, and many more. However, this method requires a long turnaround time, expensive equipment, and trained personnel, limiting its widespread availability and diagnostic capacity. On the other hand, the clustered regularly interspaced short palindromic repeats (CRISPR) technology has recently demonstrated capability for nucleic acid detection with high sensitivity and specificity. CRISPR-mediated biosensing holds great promise for revolutionizing nucleic acid testing procedures and developing point-of-care diagnostics. This review focuses on recent developments in both fundamental CRISPR biochemistry and CRISPR-based nucleic acid detection techniques. Four ongoing research hotspots in molecular diagnostics-target preamplification-free detection, microRNA (miRNA) testing, non-nucleic-acid detection, and SARS-CoV-2 detection-are also covered.


Assuntos
Técnicas Biossensoriais , COVID-19 , MicroRNAs , Humanos , Sistemas CRISPR-Cas , Patologia Molecular , SARS-CoV-2 , Teste para COVID-19
6.
Plant J ; 106(2): 314-325, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33506558

RESUMO

Volatile organic compounds (VOCs) released by plants serve as information and defense chemicals in mutualistic and antagonistic interactions and mitigate effects of abiotic stress. Passive and dynamic sampling techniques combined with gas chromatography-mass spectrometry analysis have become routine tools to measure emissions of VOCs and determine their various functions. More recently, knowledge of the roles of plant VOCs in the aboveground environment has led to the exploration of similar functions in the soil and rhizosphere. Moreover, VOC patterns have been recognized as sensitive and time-dependent markers of biotic and abiotic stress. This focused review addresses these developments by presenting recent progress in VOC sampling and analysis. We show advances in the use of small, inexpensive sampling devices and describe methods to monitor plant VOC emissions in the belowground environment. We further address latest trends in real-time measurements of volatilomes in plant phenotyping and most recent developments of small portable devices and VOC sensors for non-invasive VOC fingerprinting of plant disease. These technologies allow for innovative approaches to study plant VOC biology and application in agriculture.


Assuntos
Plantas/química , Compostos Orgânicos Voláteis/análise , Componentes Aéreos da Planta/química , Doenças das Plantas , Raízes de Plantas/química , Plantas/metabolismo , Solo
7.
Small ; 18(42): e2203491, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36047645

RESUMO

Recent advances in nanolithography, miniaturization, and material science, along with developments in wearable electronics, are pushing the frontiers of sensor technology into the large-scale fabrication of highly sensitive, flexible, stretchable, and multimodal detection systems. Various strategies, including surface engineering, have been developed to control the electrical and mechanical characteristics of sensors. In particular, surface wrinkling provides an effective alternative for improving both the sensing performance and mechanical deformability of flexible and stretchable sensors by releasing interfacial stress, preventing electrical failure, and enlarging surface areas. In this study, recent developments in the fabrication strategies of wrinkling structures for sensor applications are discussed. The fundamental mechanics, geometry control strategies, and various fabricating methods for wrinkling patterns are summarized. Furthermore, the current state of wrinkling approaches and their impacts on the development of various types of sensors, including strain, pressure, temperature, chemical, photodetectors, and multimodal sensors, are reviewed. Finally, existing wrinkling approaches, designs, and sensing strategies are extrapolated into future applications.


Assuntos
Dispositivos Eletrônicos Vestíveis , Eletrônica , Temperatura
8.
Annu Rev Biomed Eng ; 23: 433-459, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-33872519

RESUMO

Since aptamers were first reported in the early 2000s, research on their use for the detection of health-relevant analytical targets has exploded. This review article provides a brief overview of the most recent developments in the field of aptamer-based biosensors for global health applications. The review provides a description of general aptasensing principles and follows up with examples of recent reports of diagnostics-related applications. These applications include detection of proteins and small molecules, circulating cancer cells, whole-cell pathogens, extracellular vesicles, and tissue diagnostics. The review also discusses the main challenges that this growing technology faces in the quest of bringing these new devices from the laboratory to the market.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Saúde Global , Proteínas
9.
Angew Chem Int Ed Engl ; 61(50): e202213920, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36239984

RESUMO

CRISPR-based biosensors often rely on colorimetric, fluorescent, or electrochemical signaling mechanism, which involves expensive reporters and/or sophisticated equipment. Here, we demonstrated a simple, inexpensive, nonoptical, and sensitive CRISPR-Cas12a-based sensing platform to detect ssDNA targets by sizing double-stranded λ DNA as novel report molecules. In this platform, the size reduction of λ DNA was quantified by gel electrophoresis analysis. We hypothesize that the massive trans-nuclease activity of Cas12a toward λ DNA is due to the presence of single-stranded looped structures along the λ DNA sequence. In addition, we observed a strong binding affinity between Cas12a and λ DNA, which further promotes the trans-cleavage activity and helps achieve sub-picomolar detection sensitivity, ≈100 times more sensitive than the fluorescent counterpart. The concept of utilizing the physical size change of λ DNA unlocks the possibility of using a variety of dsDNA as CRISPR reporters.


Assuntos
Técnicas Biossensoriais , Sistemas CRISPR-Cas , DNA , Clivagem do DNA , DNA de Cadeia Simples
10.
Proc Natl Acad Sci U S A ; 114(34): E7054-E7062, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28784765

RESUMO

The ELISA is the mainstay for sensitive and quantitative detection of protein analytes. Despite its utility, ELISA is time-consuming, resource-intensive, and infrastructure-dependent, limiting its availability in resource-limited regions. Here, we describe a self-contained immunoassay platform (the "D4 assay") that converts the sandwich immunoassay into a point-of-care test (POCT). The D4 assay is fabricated by inkjet printing assay reagents as microarrays on nanoscale polymer brushes on glass chips, so that all reagents are "on-chip," and these chips show durable storage stability without cold storage. The D4 assay can interrogate multiple analytes from a drop of blood, is compatible with a smartphone detector, and displays analytical figures of merit that are comparable to standard laboratory-based ELISA in whole blood. These attributes of the D4 POCT have the potential to democratize access to high-performance immunoassays in resource-limited settings without sacrificing their performance.


Assuntos
Análise Química do Sangue/métodos , Imunoensaio/métodos , Polímeros/química , Biomarcadores/sangue , Análise Química do Sangue/instrumentação , Desenho de Equipamento , Humanos , Imunoensaio/instrumentação , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Leptina/sangue , Sistemas Automatizados de Assistência Junto ao Leito , Impressão
11.
Plant Dis ; 104(3): 708-716, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31967506

RESUMO

Phytophthora infestans is the causal agent of potato late blight, a devastating disease of tomato and potato and a threat to global food security. Early detection and intervention is essential for effective management of the pathogen. We developed a loop-mediated isothermal amplification (LAMP) assay for P. infestans and compared this assay to conventional PCR, real-time LAMP, and droplet digital PCR for detection of P. infestans. The LAMP assay was specific for P. infestans on potato and tomato and did not amplify other potato- or tomato-infecting Phytophthora species or other fungal and bacterial pathogens that infect potato and tomato. The detection threshold for SYBR Green LAMP and real-time LAMP read with hydroxynaphthol blue and EvaGreen was 1 pg/µl. In contrast, detection by conventional PCR was 10 pg/µl. Droplet digital PCR had the lowest detection threshold (100 fg/µl). We adapted the LAMP assay using SYBR Green and a mobile reader (mReader) for use in the field. Detection limits were 584 fg/µl for SYBR Green LAMP read on the mReader, which was more sensitive than visualization with the human eye. The mobile platform records geospatial coordinates and data from positive pathogen detections can be directly uploaded to a cloud database. Data can then be integrated into disease surveillance networks. This system will be useful for real-time detection of P. infestans and will improve the timeliness of reports into surveillance systems such as USABlight or EuroBlight.


Assuntos
Phytophthora infestans , Solanum lycopersicum , Solanum tuberosum , Técnicas de Amplificação de Ácido Nucleico , Reação em Cadeia da Polimerase
12.
Anal Chem ; 91(16): 10448-10457, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31192585

RESUMO

Developing easy-to-use and miniaturized detectors is essential for in-field monitoring of environmentally hazardous substances, such as the cyanotoxins. We demonstrated a differential fluorescent sensor array made of aptamers and single-stranded DNA (ssDNA) dyes for multiplexed detection and discrimination of four common cyanotoxins with an ordinary smartphone within 5 min of reaction. The assay reagents were preloaded and dried in a microfluidic chip with a long shelf life over 60 days. Upon the addition of analyte solutions, competitive binding of cyanotoxin to the specific aptamer-dye conjugate occurred. A zone-specific and concentration-dependent reduction in the green fluorescence was observed as a result of the aptamer conformation change. The aptasensors are fully optimized by quantification of their dissociation constants, tuning the stoichiometric ratios of reaction mixtures, and implementation of an internal intensity correction step. The fluorescent sensor array allowed for accurate identification and measurement of four important cyanotoxins, including anatoxin-a (ATX), cylindrospermopsin (CYN), nodularin (NOD), and microcystin-LR (MC-LR), in parallel, with the limit of detection (LOD) down to a few nanomolar (<3 nM), which is close to the World Health Organization's guideline for the maximum concentration allowed in drinking water. The smartphone-based sensor platform also showed remarkable chemical specificity against potential interfering agents in water. The performance of the system was tested and validated with real lake water samples that were contaminated with trace levels of individual cyanotoxins as well as binary, ternary, and quaternary mixtures. Finally, a smartphone app interface has been developed for rapid on-site data processing and result display.


Assuntos
Aptâmeros de Nucleotídeos/química , Toxinas Bacterianas/análise , Técnicas Biossensoriais/métodos , Microcistinas/análise , Peptídeos Cíclicos/análise , Tropanos/análise , Uracila/análogos & derivados , Poluentes Químicos da Água/análise , Alcaloides , Técnicas Biossensoriais/instrumentação , Toxinas de Cianobactérias , DNA de Cadeia Simples/química , Fluorescência , Água Doce/química , Humanos , Dispositivos Lab-On-A-Chip , Lagos/química , Limite de Detecção , Toxinas Marinhas , Análise em Microsséries , Smartphone , Uracila/análise
13.
Anal Chem ; 90(15): 8881-8888, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30004217

RESUMO

We present an approach to estimate the concentration of a biomolecule in a solution by sampling several nanoliter-scale volumes and determining if the volumes contain any biomolecules. In this method, varying volume fractions (nanoliter-scale) of a sample of nucleic acids are introduced to an array of uniform volume reaction wells (100 µL), which are then fluorescently imaged to determine if signal is above a threshold after nucleic acid amplification, all without complex instrumentation. The nanoliter volumes are generated and introduced using the simple positioning of a permanent magnet, and imaging is performed with a cellphone-based fluorescence detection scheme, both methods suitable for limited-resource settings. We use the length of time a magnetic field is applied to generate a calibrated number of nanoliter ferrodrops of sample mixed with ferrofluid at a step emulsification microfluidic junction. Each dose of ferrodrops is then transferred into larger microliter scale reaction wells on chip through a simple shift of the external magnet. Nucleic acid amplification is achieved using loop-mediated isothermal amplification (LAMP). By repeating each nanoliter dosage a number of times to calculate the probability of a positive signal at each dosage, we can use a binomial probability distribution to estimate the sample nucleic acid concentration. Using this approach we demonstrate detection of lambda DNA molecules down to 25 copies per microliter. The ability to dose separate nanoliter-scale volumes of a low-volume sample across wells in this platform is suited for multiplexed assays. This platform has the potential to be applied to a range of diseases by mixing a sample with magnetic nanoparticles.


Assuntos
DNA/análise , Nanopartículas de Magnetita/química , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas de Amplificação de Ácido Nucleico/instrumentação , Emulsões/química , Desenho de Equipamento , Técnicas Analíticas Microfluídicas/economia , Técnicas de Amplificação de Ácido Nucleico/economia , Tamanho da Amostra
14.
Anal Chem ; 90(1): 690-695, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29136461

RESUMO

Nucleic acids, DNA and RNA, provide important fingerprint information for various pathogens and have significant diagnostic value; however, improved approaches are urgently needed to enable rapid detection of nucleic acids in simple point-of-care formats with high sensitivity and specificity. Here, we present a system that utilizes a series of toehold-triggered hybridization/displacement reactions that are designed to convert a given amount of RNA molecules (i.e., the analyte) into an amplified amount of signaling molecules without any washing steps or thermocycling. Fluorescent probes for signal generation were designed to consume products of the catalytic reaction in order to push the equilibrium and enhance the assay fold amplification for improved sensitivity and reaction speed. The system of toehold-assisted reactions is also modeled to better understand its performance and capabilities, and we empirically demonstrate the success of this approach with two analytes of diagnostic importance, i.e., influenza viral RNA and a micro RNA (miR-31). We also show that the amplified signal permits using a compact and cost-effective smartphone-based fluorescence reader, an important requirement toward a nucleic-acid-based point-of-care diagnostic system.


Assuntos
Bioensaio/métodos , Telefone Celular , MicroRNAs/sangue , Técnicas de Amplificação de Ácido Nucleico/métodos , Sequência de Bases , Linhagem Celular Tumoral , Corantes Fluorescentes/química , Humanos , Limite de Detecção , MicroRNAs/genética , Hibridização de Ácido Nucleico , Oligodesoxirribonucleotídeos/genética , Orthomyxoviridae/genética , Sistemas Automatizados de Assistência Junto ao Leito
15.
Anal Chem ; 87(13): 6434-45, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26068279

RESUMO

Providing means for researchers and citizen scientists in the developing world to perform advanced measurements with nanoscale precision can help to accelerate the rate of discovery and invention as well as improve higher education and the training of the next generation of scientists and engineers worldwide. Here, we review some of the recent progress toward making optical nanoscale measurement tools more cost-effective, field-portable, and accessible to a significantly larger group of researchers and educators. We divide our review into two main sections: label-based nanoscale imaging and sensing tools, which primarily involve fluorescent approaches, and label-free nanoscale measurement tools, which include light scattering sensors, interferometric methods, photonic crystal sensors, and plasmonic sensors. For each of these areas, we have primarily focused on approaches that have either demonstrated operation outside of a traditional laboratory setting, including for example integration with mobile phones, or exhibited the potential for such operation in the near future.


Assuntos
Nanotecnologia , Óptica e Fotônica , Microscopia de Fluorescência
16.
Commun Chem ; 7(1): 130, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851849

RESUMO

Most CRISPR-based biosensors rely on labeled reporter molecules and expensive equipment for signal readout. A recent approach quantifies analyte concentration by sizing λ DNA reporters via gel electrophoresis, providing a simple solution for label-free detection. Here, we report an alternative strategy for label-free CRISPR-Cas12a, which relies on Cas12a trans-nicking induced supercoil relaxation of dsDNA plasmid reporters to generate a robust and ratiometric readout. The ratiometric CRISPR (rCRISPR) measures the relative percentage of supercoiled plasmid DNA to the relaxed circular DNA by gel electrophoresis for more accurate target concentration quantification. This simple method is two orders of magnitude more sensitive than the typical fluorescent reporter. This self-referenced strategy solves the potential application limitations of previously demonstrated DNA sizing-based CRISPR-Dx without compromising the sensitivity. Finally, we demonstrated the applicability of rCRISPR for detecting various model DNA targets such as HPV 16 and real AAV samples, highlighting its feasibility for point-of-care CRISPR-Dx applications.

17.
PNAS Nexus ; 2(10): pgad313, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37829844

RESUMO

Time-resolved techniques have been widely used in time-gated and luminescence lifetime imaging. However, traditional time-resolved systems require expensive lab equipment such as high-speed excitation sources and detectors or complicated mechanical choppers to achieve high repetition rates. Here, we present a cost-effective and miniaturized smartphone lifetime imaging system integrated with a pulsed ultraviolet (UV) light-emitting diode (LED) for 2D luminescence lifetime imaging using a videoscopy-based virtual chopper (V-chopper) mechanism combined with machine learning. The V-chopper method generates a series of time-delayed images between excitation pulses and smartphone gating so that the luminescence lifetime can be measured at each pixel using a relatively low acquisition frame rate (e.g. 30 frames per second [fps]) without the need for excitation synchronization. Europium (Eu) complex dyes with different luminescent lifetimes ranging from microseconds to seconds were used to demonstrate and evaluate the principle of V-chopper on a 3D-printed smartphone microscopy platform. A convolutional neural network (CNN) model was developed to automatically distinguish the gated images in different decay cycles with an accuracy of >99.5%. The current smartphone V-chopper system can detect lifetime down to ∼75 µs utilizing the default phase shift between the smartphone video rate and excitation pulses and in principle can detect much shorter lifetimes by accurately programming the time delay. This V-chopper methodology has eliminated the need for the expensive and complicated instruments used in traditional time-resolved detection and can greatly expand the applications of time-resolved lifetime technologies.

18.
Nat Commun ; 14(1): 4327, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468480

RESUMO

Molecular diagnostics for crop diseases can guide the precise application of pesticides, thereby reducing pesticide usage while improving crop yield, but tools are lacking. Here, we report an in-field molecular diagnostic tool that uses a cheap colorimetric paper and a smartphone, allowing multiplexed, low-cost, rapid detection of crop pathogens. Rapid nucleic acid amplification-free detection of pathogenic RNA is achieved by combining toehold-mediated strand displacement with a metal ion-mediated urease catalysis reaction. We demonstrate multiplexed detection of six wheat pathogenic fungi and an early detection of wheat stripe rust. When coupled with a microneedle for rapid nucleic acid extraction and a smartphone app for results analysis, the sample-to-result test can be completed in ~10 min in the field. Importantly, by detecting fungal RNA and mutations, the approach allows to distinguish viable and dead pathogens and to sensitively identify mutation-carrying fungicide-resistant isolates, providing fundamental information for precision crop disease management.


Assuntos
Basidiomycota , RNA , Patologia Molecular , Smartphone , Fungos/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Basidiomycota/genética , Mutação
19.
Sci Adv ; 9(15): eade2232, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37043563

RESUMO

Wearable plant sensors hold tremendous potential for smart agriculture. We report a lower leaf surface-attached multimodal wearable sensor for continuous monitoring of plant physiology by tracking both biochemical and biophysical signals of the plant and its microenvironment. Sensors for detecting volatile organic compounds (VOCs), temperature, and humidity are integrated into a single platform. The abaxial leaf attachment position is selected on the basis of the stomata density to improve the sensor signal strength. This versatile platform enables various stress monitoring applications, ranging from tracking plant water loss to early detection of plant pathogens. A machine learning model was also developed to analyze multichannel sensor data for quantitative detection of tomato spotted wilt virus as early as 4 days after inoculation. The model also evaluates different sensor combinations for early disease detection and predicts that minimally three sensors are required including the VOC sensors.


Assuntos
Compostos Orgânicos Voláteis , Dispositivos Eletrônicos Vestíveis , Folhas de Planta , Temperatura , Fenômenos Fisiológicos Vegetais , Plantas
20.
CRISPR J ; 5(4): 500-516, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35856644

RESUMO

Infectious pathogens are pressing concerns due to their heavy toll on global health and socioeconomic infrastructure. Rapid, sensitive, and specific pathogen detection methods are needed more than ever to control disease spreading. The fast evolution of clustered regularly interspaced short palindromic repeats (CRISPR)-based diagnostics (CRISPR-Dx) has opened a new horizon in the field of molecular diagnostics. This review highlights recent efforts in configuring CRISPR technology as an efficient diagnostic tool for pathogen detection. It starts with a brief introduction of different CRISPR-Cas effectors and their working principles for disease diagnosis. It then focuses on the evolution of laboratory-based CRISPR technology toward a potential point-of-care test, including the development of new signaling mechanisms, elimination of preamplification and sample pretreatment steps, and miniaturization of CRISPR reactions on digital assay chips and lateral flow devices. In addition, promising examples of CRISPR-Dx for pathogen detection in various real samples, such as blood, saliva, nasal swab, plant, and food samples, are highlighted. Finally, the challenges and perspectives of future development of CRISPR-Dx for infectious disease monitoring are discussed.


Assuntos
Técnicas Biossensoriais , Edição de Genes , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Plantas , Sistemas Automatizados de Assistência Junto ao Leito
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA