Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 19(12): 8399-8408, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31512886

RESUMO

The precise manipulation, localization, and assembly of biological and bioinspired molecules into organized structures have greatly promoted material science and bionanotechnology. Further technological innovation calls for new patternable soft materials with the long-sought qualities of environmental tolerance and functional flexibility. Here, we report a patterned amyloid material (PAM) platform for producing hierarchically ordered structures that integrate these material attributes. This platform, combining soft lithography with generic amyloid monomer inks (consisting of genetically engineered biofilm proteins dissolved in hexafluoroisopropanol), along with methanol-assisted curing, enables the spatially controlled deposition and in situ reassembly of amyloid monomers. The resulting patterned structures exhibit spectacular chemical and thermal stability and mechanical robustness under harsh conditions. The PAMs can be programmed for a vast array of multilevel functionalities, including anchoring nanoparticles, enabling diverse fluorescent protein arrays, and serving as self-supporting porous sheets for cellular growth. This PAM platform will not only drive innovation in biomanufacturing but also broaden the applications of patterned soft architectures in optics, electronics, biocatalysis, analytical regents, cell engineering, medicine, and other areas.


Assuntos
Amiloide/química , Nanopartículas/química
2.
Mater Today Bio ; 13: 100179, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34938993

RESUMO

The precise fabrication of artificially designed molecular complexes into ordered structures resembling their natural counterparts would find broad applications but remains a major challenge in the field. Here we genetically design chitin-binding domain (CBD)-containing amyloid proteins, and rationally fabricate well-ordered CBD-containing functional amyloid-chitin complex structures by coupling a top-down manufacturing process with a bottom-up self-assembly. Our fabrication approach starts with the dissolution of both CBD-containing functional amyloid and chitin in hexafluoroisopropanol (HFIP) to make a hybrid ink. This hybrid ink platform, coupled with multiple fabrication methods including airbrushing, electrospinning and soft-lithography, produces a series of unique freestanding structures. The structural features of the products, such as the ability to direct the light path and mimicking of the extracellular matrix enable applications in functional light gratings and cell culture, respectively. Further genetic engineering of the protein component allowed tunable functionalization of these materials, including nanoparticle immobilization and protein conjugation, resulting in broad applications in electronic devices and enzyme immobilization. Our technological platform can drive new advances in biocatalysis, tissue engineering, biomedicine, photonics and electronics.

3.
ACS Appl Mater Interfaces ; 11(35): 32373-32380, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31407877

RESUMO

Rechargeable batteries that combine high energy density with high power density are highly demanded. However, the wide utilization of lithium metal anode is limited by the uncontrollable dendrite growth, and the conventional lithium-ion batteries (LIBs) commonly suffer from low rate capability. Here, we for the first time develop a biofilm-coated separator for high-energy and high-power batteries. It reveals that the coating of Escherichia coli protein nanofibers can improve electrolyte wettability and lithium transference number and enhance adhesion between separators and electrodes. Thus, lithium dendrite growth is impeded because of the uniform distribution of the Li-ion flux. The modified separator also enables the stable cycling of high-voltage Li|Li1.2Mn0.6Ni0.2O2 (LNMO) cells at an extremely high rate of 20 C, delivering a high specific capacity of 83.1 mA h g-1, which exceeds the conventional counterpart. In addition, the modified separator in the Li4Ti5O12|LNMO full cell also exhibits a larger capacity of 68.2 mA h g-1 at 10 C than the uncoated separator of 37.4 mA h g-1. Such remarkable performances of the modified separators arise from the conformal, adhesive, and endurable coating of biofilm nanofibers. Our work opens up a new opportunity for protein-based biomaterials in practical application of high-energy and high-power batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA