RESUMO
Realtime multi-person 2D pose estimation is a key component in enabling machines to have an understanding of people in images and videos. In this work, we present a realtime approach to detect the 2D pose of multiple people in an image. The proposed method uses a nonparametric representation, which we refer to as Part Affinity Fields (PAFs), to learn to associate body parts with individuals in the image. This bottom-up system achieves high accuracy and realtime performance, regardless of the number of people in the image. In previous work, PAFs and body part location estimation were refined simultaneously across training stages. We demonstrate that a PAF-only refinement rather than both PAF and body part location refinement results in a substantial increase in both runtime performance and accuracy. We also present the first combined body and foot keypoint detector, based on an internal annotated foot dataset that we have publicly released. We show that the combined detector not only reduces the inference time compared to running them sequentially, but also maintains the accuracy of each component individually. This work has culminated in the release of OpenPose, the first open-source realtime system for multi-person 2D pose detection, including body, foot, hand, and facial keypoints.
RESUMO
We present supervision by registration and triangulation (SRT), an unsupervised approach that utilizes unlabeled multi-view video to improve the accuracy and precision of landmark detectors. Being able to utilize unlabeled data enables our detectors to learn from massive amounts of unlabeled data freely available and not be limited by the quality and quantity of manual human annotations. To utilize unlabeled data, there are two key observations: (I) The detections of the same landmark in adjacent frames should be coherent with registration, i.e., optical flow. (II) The detections of the same landmark in multiple synchronized and geometrically calibrated views should correspond to a single 3D point, i.e., multi-view consistency. Registration and multi-view consistency are sources of supervision that do not require manual labeling, thus it can be leveraged to augment existing training data during detector training. End-to-end training is made possible by differentiable registration and 3D triangulation modules. Experiments with 11 datasets and a newly proposed metric to measure precision demonstrate accuracy and precision improvements in landmark detection on both images and video.
RESUMO
The recent advances in imaging devices have opened the opportunity of better solving the tasks of video content analysis and understanding. Next-generation cameras, such as the depth or binocular cameras, capture diverse information, and complement the conventional 2D RGB cameras. Thus, investigating the yielded multimodal videos generally facilitates the accomplishment of related applications. However, the limitations of the emerging cameras, such as short effective distances, expensive costs, or long response time, degrade their applicability, and currently make these devices not online accessible in practical use. In this paper, we provide an alternative scenario to address this problem, and illustrate it with the task of recognizing human actions. In particular, we aim at improving the accuracy of action recognition in RGB videos with the aid of one additional RGB-D camera. Since RGB-D cameras, such as Kinect, are typically not applicable in a surveillance system due to its short effective distance, we instead offline collect a database, in which not only the RGB videos but also the depth maps and the skeleton data of actions are available jointly. The proposed approach can adapt the interdatabase variations, and activate the borrowing of visual knowledge across different video modalities. Each action to be recognized in RGB representation is then augmented with the borrowed depth and skeleton features. Our approach is comprehensively evaluated on five benchmark data sets of action recognition. The promising results manifest that the borrowed information leads to remarkable boost in recognition accuracy.