Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Elife ; 132024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963785

RESUMO

Intonation in speech is the control of vocal pitch to layer expressive meaning to communication, like increasing pitch to indicate a question. Also, stereotyped patterns of pitch are used to create distinct sounds with different denotations, like in tonal languages and, perhaps, the 10 sounds in the murine lexicon. A basic tone is created by exhalation through a constricted laryngeal voice box, and it is thought that more complex utterances are produced solely by dynamic changes in laryngeal tension. But perhaps, the shifting pitch also results from altering the swiftness of exhalation. Consistent with the latter model, we describe that intonation in most vocalization types follows deviations in exhalation that appear to be generated by the re-activation of the cardinal breathing muscle for inspiration. We also show that the brainstem vocalization central pattern generator, the iRO, can create this breath pattern. Consequently, ectopic activation of the iRO not only induces phonation, but also the pitch patterns that compose most of the vocalizations in the murine lexicon. These results reveal a novel brainstem mechanism for intonation.


Assuntos
Vocalização Animal , Animais , Vocalização Animal/fisiologia , Camundongos , Tronco Encefálico/fisiologia , Respiração , Fonação/fisiologia
2.
Cardiovasc Res ; 120(3): 262-272, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38084908

RESUMO

AIMS: Physiological cardiac hypertrophy occurs in response to exercise and can protect against pathological stress. In contrast, pathological hypertrophy occurs in disease and often precedes heart failure. The cardiac pathways activated in physiological and pathological hypertrophy are largely distinct. Our prior work demonstrated that miR-222 increases in exercised hearts and is required for exercise-induced cardiac hypertrophy and cardiomyogenesis. Here, we sought to define the role of miR-222 in pathological hypertrophy. METHODS AND RESULTS: We found that miR-222 also increased in pathological hypertrophy induced by pressure overload. To assess its functional significance in this setting, we generated a miR-222 gain-of-function model through cardiac-specific constitutive transgenic miR-222 expression (TgC-miR-222) and used locked nucleic acid anti-miR specific for miR-222 to inhibit its effects. Both gain- and loss-of-function models manifested normal cardiac structure and function at baseline. However, after transverse aortic constriction (TAC), miR-222 inhibition accelerated the development of pathological hypertrophy, cardiac dysfunction, and heart failure. Conversely, miR-222-overexpressing mice had less pathological hypertrophy after TAC, as well as better cardiac function and survival. We identified p53-up-regulated modulator of apoptosis, a pro-apoptotic Bcl-2 family member, and the transcription factors, Hmbox1 and nuclear factor of activated T-cells 3, as direct miR-222 targets contributing to its roles in this context. CONCLUSION: While miR-222 is necessary for physiological cardiac growth, it inhibits cardiac growth in response to pressure overload and reduces adverse remodelling and cardiac dysfunction. These findings support the model that physiological and pathological hypertrophy are fundamentally different. Further, they suggest that miR-222 may hold promise as a therapeutic target in pathological cardiac hypertrophy and heart failure.


Assuntos
Cardiopatias , Insuficiência Cardíaca , MicroRNAs , Camundongos , Animais , MicroRNAs/genética , Cardiomegalia/metabolismo , Insuficiência Cardíaca/metabolismo , Coração , Cardiopatias/patologia , Miócitos Cardíacos/metabolismo , Modelos Animais de Doenças , Proteínas de Homeodomínio/metabolismo
3.
Neuron ; 110(4): 644-657.e6, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-34998469

RESUMO

Human speech can be divided into short, rhythmically timed elements, similar to syllables within words. Even our cries and laughs, as well as the vocalizations of other species, are periodic. However, the cellular and molecular mechanisms underlying the tempo of mammalian vocalizations remain unknown. Furthermore, even the core cells that produce vocalizations remain ill-defined. Here, we describe rhythmically timed neonatal mouse vocalizations that occur within single breaths and identify a brainstem node that is necessary for and sufficient to structure these cries, which we name the intermediate reticular oscillator (iRO). We show that the iRO acts autonomously and sends direct inputs to key muscles and the respiratory rhythm generator in order to coordinate neonatal vocalizations with breathing, as well as paces and patterns these cries. These results reveal that a novel mammalian brainstem oscillator embedded within the conserved breathing circuitry plays a central role in the production of neonatal vocalizations.


Assuntos
Tronco Encefálico , Choro , Animais , Animais Recém-Nascidos , Tronco Encefálico/fisiologia , Humanos , Mamíferos , Camundongos , Respiração , Fala
4.
Neurologist ; 27(4): 173-176, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34967821

RESUMO

BACKGROUND: Despite calls to increase diversity in the health care workforce, most medical fields including neurology have seen minimal advances, owing in part to the lack of developing a robust pipeline for trainees from underrepresented backgrounds. We sought to create an immersive, replicable neurology-themed summer camp and longitudinal mentorship program for underrepresented-in-medicine (URM) high-school students to encourage them to enter the training pipeline in neuroscience-related fields. METHODS: We established an annual, no-cost 1-week camp for local URM students with the goals of exposing them to different health care professions within neuroscience while providing them with college application resources and long-term mentorship. A postprogram survey was distributed to assess the students' attitudes towards the camp and their desires to pursue health care careers. RESULTS: Over the 4 years since the founding of the camp (2016-2020), a total of 96 students participated, of whom 53% were URM, 74% came from very low-income households, and 61% had parents who did not attend college. In total, 87 students (91%) completed the postcamp survey. Nearly all (97%) of the respondents were likely to recommend the camp to their peers, and the vast majority (85%) felt that Brain Camp made them more likely to pursue careers in health care. CONCLUSIONS: Brain Camp seeks to address the unmet need for low barrier-to-entry programs designed for URM high-school students interested in health care careers. We envision that our camp may serve as a blueprint for other similar programs across the nation with the goal of addressing the URM pipeline in neuroscience.


Assuntos
Escolha da Profissão , Estudantes de Medicina , Encéfalo , Humanos , Grupos Minoritários/educação
5.
Elife ; 102021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34002697

RESUMO

Opioids are perhaps the most effective analgesics in medicine. However, between 1999 and 2018, over 400,000 people in the United States died from opioid overdose. Excessive opioids make breathing lethally slow and shallow, a side-effect called opioid-induced respiratory depression. This doubled-edged sword has sparked the desire to develop novel therapeutics that provide opioid-like analgesia without depressing breathing. One such approach has been the design of so-called 'biased agonists' that signal through some, but not all pathways downstream of the µ-opioid receptor (MOR), the target of morphine and other opioid analgesics. This rationale stems from a study suggesting that MOR-induced ß-arrestin 2 dependent signaling is responsible for opioid respiratory depression, whereas adenylyl cyclase inhibition produces analgesia. To verify this important result that motivated the 'biased agonist' approach, we re-examined breathing in ß-arrestin 2-deficient mice and instead find no connection between ß-arrestin 2 and opioid respiratory depression. This result suggests that any attenuated effect of 'biased agonists' on breathing is through an as-yet defined mechanism.


Opioid drugs are commonly prescribed due to their powerful painkilling properties. However, when misused, these compounds can cause breathing to become dangerously slow and shallow: between 1999 and 2018, over 400,000 people died from opioid drug overdoses in the United States alone. Exactly how the drugs affect breathing remains unclear. What is known is that opioids work by binding to specific receptors at the surface of cells, an event which has a ripple effect on many biochemical pathways. Amongst these, research published in 2005 identified the ß-arrestin 2 pathway as being responsible for altering breathing. This spurred efforts to find opioid-like drugs that would not interfere with the pathway, retaining their ability relieve pain but without affecting breathing. However, new evidence is now shedding doubt on the conclusions of this study. In response, Bachmutsky, Wei et al. attempted to replicate the original 2005 findings. Mice with carefully controlled genetic background were used, in which the genes for the ß-arrestin 2 pathway were either present or absent. Both groups of animals had similar breathing patterns under normal conditions and after receiving an opioid drug. The results suggest ß-arrestin 2 is not involved in opioid-induced breathing suppression. These findings demonstrate that research to develop opioid-like drugs that do not affect the ß-arrestin 2 pathway are based on a false premise. Precisely targeting a drug's molecular mechanisms to avoid suppressing breathing may still be a valid approach, but more research is needed to identify the right pathways.


Assuntos
Analgésicos Opioides/efeitos adversos , Morfina/efeitos adversos , Insuficiência Respiratória/induzido quimicamente , beta-Arrestina 2/genética , Animais , Camundongos , Camundongos Knockout , Pletismografia , Respiração/efeitos dos fármacos
6.
Elife ; 92020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32073401

RESUMO

The rates of opioid overdose in the United States quadrupled between 1999 and 2017, reaching a staggering 130 deaths per day. This health epidemic demands innovative solutions that require uncovering the key brain areas and cell types mediating the cause of overdose- opioid-induced respiratory depression. Here, we identify two primary changes to murine breathing after administering opioids. These changes implicate the brainstem's breathing circuitry which we confirm by locally eliminating the µ-Opioid receptor. We find the critical brain site is the preBötzinger Complex, where the breathing rhythm originates, and use genetic tools to reveal that just 70-140 neurons in this region are responsible for its sensitivity to opioids. Future characterization of these neurons may lead to novel therapies that prevent respiratory depression while sparing analgesia.


Opioids such as morphine or fentanyl are powerful substances used to relieve pain in medical settings. However, taken in too high a dose they can depress breathing ­ in other words, they can lead to slow, shallow breaths that cannot sustain life. In the United States, where the misuse of these drugs has been soaring in the past decades, about 130 people die each day from opioid overdose. Pinpointing the exact brain areas and neurons that opioids act on to depress breathing could help to create safer painkillers that do not have this deadly effect. While previous studies have proposed several brain regions that could be involved, they have not been able to confirm these results, or determine which area plays the biggest role. Opioids influence the brain of animals (including humans) by attaching to proteins known as opioid receptors that are present at the surface of neurons. Here, Bachmutsky et al. genetically engineered mice that lack these receptors in specific brain regions that control breathing. The animals were then exposed to opioids, and their breathing was closely monitored. The experiments showed that two small brain areas were responsible for breathing becoming depressed under the influence of opioids. The region with the most critical impact also happens to be where the breathing rhythms originate. There, a small group of 50 to 140 neurons were used by opioids to depress breathing. Crucially, these cells were not necessary for the drugs' ability to relieve pain. Overall, the work by Bachmutsky et al. highlights a group of neurons whose role in creating breathing rhythms deserves further attention. It also opens the possibility that targeting these neurons would help to create safer painkillers.


Assuntos
Analgésicos Opioides/efeitos adversos , Tronco Encefálico/efeitos dos fármacos , Insuficiência Respiratória/induzido quimicamente , Animais , Tronco Encefálico/fisiologia , Humanos , Camundongos , Pletismografia Total , Respiração/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA